Catalytic Oxidation of Cyclohex-2-enol at Porous Iron Zeolite-like Material: Investigations by GC/MS, Polarography and X-ray Powder Diffraction

2018;
: pp.147-153
1
Department of Chemistry, Faculty of Science, Technical Tafila University

The polymeric complexes of porous iron phosphates (NH4)4Fe3 II(OH)2F2[H3(PO4)4] (1), (C3H12N2) FeII 6(H2O)4[B4P8O23(OH)8] (2), and {[FeII(H2PO4)2-(μ4,4'-bipy)(H2O)]·H2O·(4,4'-bipy)} (3) were successfully tested towards oxidation of cyclohex-2-enol. The resulting products have been monitored and characterized using gas chromatography/mass spectroscopy, IR spectroscopy, and elemental analysis. Structural properties of the polymeric complexes have been studied using powder X-ray diffraction and electrochemical measurements. The results indicate that these complexes display an irreversible redox process and have high thermal stability. The results also indicated that these complexes undergo a phase change as evidenced by the change of the state of oxidation of metal centres.

[1] Hortholary C., Coudret C.: J. Org. Chem., 2003, 68, 2167. https://doi.org/10.1021/jo026735z
[2] Ying J., Sobraningh D., Xu G. et al.: Chem. Commun., 2005, 3, 357. https://doi.org/10.1039/b412336k
[3] Beer P., Hayes E.: Coord. Chem. Rev., 2003, 240, 167. https://doi.org/10.1016/S0010-8545(02)00303-X
[4] Gupta K., Sutar A.: J. Mol. Catal. A, 2007, 272, 64. https://doi.org/10.1016/j.molcata.2007.03.025
[5] Moloto M., Nelana S., Moutloali R. et al.: J. Organomet. Chem., 2004, 689, 387. https://doi.org/10.1016/j.jorganchem.2003.10.027
[6] Shin J., Matyba P., Robinson N., Edman L.: Electrochim. Acta, 2007, 52, 6456. https://doi.org/10.1016/j.electacta.2007.04.068
[7] Mi J., Wang C., Chen N. et al.: J. Solid State Chem., 2010, 183, 2763. https://doi.org/10.1016/j.jssc.2010.09.008
[8] Gao Y., Zhang X., Wang P. et al.: Appl. Surf. Sci., 2017, 402, 336. https://doi.org/10.1016/j.apsusc.2017.01.134
[9] Brigo L., Faustini M., Pistore A. et al.: J. Non-Cryst. Solids, 2016, 432, 399. https://doi.org/10.1016/j.jnoncrysol.2015.10.041
[10] Qin L., Qiao W., Zuo W. et al.: J. Solid State Chem., 2016, 239, 53. https://doi.org/10.1016/j.jssc.2016.04.021
[11] Abd-El-Aziz A., Todd E.: Coord. Chem. Rev., 2003, 246, 3. https://doi.org/10.1016/S0010-8545(03)00107-3
[12] Fratoddi I., Battocchio C., Furlani A. et al.: J. Organomet. Chem., 2003, 674, 10. https://doi.org/10.1016/S0022-328X(03)00156-6
[13] Huang Y., Schnelle W., Zhang H. et al.: J. Solid State Chem., 2009, 182, 920. https://doi.org/10.1016/j.jssc.2009.01.012
[14] Trapp O.: J. Chromatog. A, 2008, 1184, 160. https://doi.org/10.1016/j.chroma.2007.10.086
[15] Nijhuis T., Sacaliuc E., Beale A. et al.: J. Catal., 2008, 258, 256. https://doi.org/10.1016/j.jcat.2008.06.020
[16] Zhou B.-C., Yao Y.-W., Wang R.-J.: Acta Crystallogr. C, 2002, 58, i109. https://doi.org/10.1107/S0108270102009873
[17] Ezzatahmadi N., Ayoko G., Millar G. et al.: Chem. Eng. J., 2017, 312, 336. https://doi.org/10.1016/j.cej.2016.11.154
[18] Kang S., Bokare A., Park Y. et al.: Catal. Today, 2017, 282, 65. https://doi.org/10.1016/j.cattod.2016.03.009
[19] Coffey G., Hardy J., Pedersen L. et al.: Solid State Ionics, 2003, 158, 1. https://doi.org/10.1016/S0167-2738(02)00174-1
[20] Colson R., Floden A., Haugen T. et al.: Geochim. et Cosmochim. Acta, 2005, 69, 3061. https://doi.org/10.1016/j.gca.2005.02.005
[21] Somer G., Ünal Ü: Talanta, 2004, 62, 323. https://doi.org/10.1016/j.talanta.2003.07.018
[22] Snegur L., Simenel A., Nekrasov Y. et al.: J. Organomet. Chem., 2004, 689, 2473. https://doi.org/10.1016/j.jorganchem.2004.05.001
[23] Moorthy L., Jayasimhadri M., Saleem S., Murthy D.: J. Non-Cryst. Solids, 2007, 353, 1392. https://doi.org/10.1016/j.jnoncrysol.2006.10.062
[24] Liu L., Liu D., Wang M., Du G.: Eur. Polym. J., 2007, 43, 2672. https://doi.org/10.1016/j.eurpolymj.2007.02.045
[25] Cahil A., Najdoski M., Stefov V.: J. Molec. Struct., 2007, 834, 408. https://doi.org/10.1016/j.molstruc.2006.11.049