Niobium Oxide as Catalyst for the Pyrolysis of Polypropylene and Polyethylene Plastic Waste

2016;
: pp. 465 – 472
https://doi.org/10.23939/chcht10.04.465
Received: January 15, 2016
Revised: March 11, 2016
Accepted: June 12, 2016
Authors: 

Debora Almeida and Maria de Fatima Marques

Universidade Federal do Rio de Janeiro, Instituto de Macromoleculas Eloisa Mano, IMA-UFRJ. Cidade Universitária. Av. Horácio Macedo, 2.030. Centro de Tecnologia. Bloco J. Rio de Janeiro. RJ. Brasil; fmarques@ima.ufrj.br

In the present work, the pyrolysis of polypropylene and polyethylene was evaluated with and without the addition of niobium oxide as catalyst by means of thermogravimetric analysis and experiments in a glass reactor. The results revealed that niobium oxide performed well in the pyrolysis of both polypropylene and polyethylene separately. For the mixture of polypropylene with polyethylene, the catalyst reduced the pyrolysis time.

[1] Mastral J., Berrueco C. and Ceamonos J.: J. Anal. Appl. Pyrolysis, 2007, 80, 427.
[2] Shah S., Khan Z., Raja I. et al.: J. Hazard. Mater., 2010, 179, 15.
[3] Abbas-Abadi M., Haghighi M. and Yeganeh H.: J. Anal. Appl. Pyrolysis, 2012, 95, 198.
[4] Arabiourrutia M., Elordi G., Lopez G. et al.: J. Anal. Appl. Pyrolysis, 2012, 94, 230.
[5] Coelho A., Costa L., Marques M. et al.: Appl. Catal. A, 2012, 413, 183.
[6] Abbas-Abadi M., Haghighi M. and Yeganeh H.: Fuel Process. Technol., 2013, 109, 90.
[7] Lee S., Yoon J., Kim J. and Park D.: Polym. Degrad. Stab., 2001, 74, 297.
[8] Lin Y.-H. and Yang M.-H.: J. Anal. Appl. Pyrolysis, 2008, 83, 101.
[9] Huang W.-C., Huang M.-S., Huang C.-F. et al.: Fuel, 2010, 89, 2305.
[10] Lopez A., Marco I., Caballero B. et al.: Waste Manage., 2011, 31, 1852.
[11] Valle M., Guimaraes M. and Sampaio C.: Polimeros, 2004, 14, 17.
[12] Zadgaonkar A. [in:] Scheirs J. and Kaminsky W. (Eds.), Feedstock Recycling and Pyrolysis of Waste Plastics.Wiley, NY 2006, 709.
[13] Obali Z., Sezgi N. and Dogu T.: Chem. Eng. J.: 2012, 207, 421.
[14] Hartulistiyoso E., Sigiro F. and Yulianto M.: Procedia Environ. Sci., 2015, 28, 234.
[15] Park D., Hwang E., Kim J. et al.: Polym. Degrad. Stab., 1999, 65, 193.
[16] Lin Y.-H. and Yang M.-H.: J. Mol. Catal. A, 2005, 231, 113.
[17] Spinace M. and de Paoli M.: Quim Nova, 2005, 98, 65.
[18] Achilias D., Roupakias C., Megalokonomos P. et al.: J. Hazard Mater., 2007, 149, 536.
[19] Aguado J., Serrano D., San Miguel G. et al.: J. Anal. Appl. Pyrolysis, 2007, 78, 153.
[20] Panda A., Singh R. and Mishra D.: Renew Sustain. Energ. Rev., 2010, 14, 233.
[21] Syamsiro M., Saptoadi H., Norsujianto T. et al.: Energ. Procedia, 2014, 47, 180.
[22] Lerici L., Renzini M. and Pierella L.: Procedia Mater. Sci., 2015, 8, 297.
[23] Serrano D., Aguado J., Escola J. and Rodriguez J.: J. Anal. Appl. Pyrolysis, 2005, 74, 353.
[24] Maschio L., Pereira P. and Silva M.: Carbohyd. Polym., 2012, 89, 992.
[25] Nowak I.: Catal. Today, 2012, 192, 80.
[26] Qin Z., Shen B., Yu Z. et al.: J. Catal., 2013, 298, 102.
[27] Bagri R. and Williams P.: J. Anal. Appl. Pyrolysis, 2002, 63, 29.
[28] Marcilla A., Beltran M. and Navarro R.: Appl. Catal. B, 2009, 86, 78.
[29] Pinto F., Costa P., Gulyurtlu I. and Cabrita I.: J. Anal. Appl. Pyrolysis, 1999, 51, 57.
[30] Hernandez M., Garcia A. and Marcilla A.: J. Anal. Appl. Pyrolysis, 2005, 73, 314.