Electrochemical properties of the composites synthesized from polyaniline and modified mwcnt

Authors: 

Yaroslav Kovalyshyn, Myroslava Konovska, Chiara Milanese, Ivan Saldan, Roman Serkiz, Orest Pereviznyk, Oleksandr Reshetnyak, Orest Kuntyi

Yaroslav Kovalyshyn-1, Myroslava Konovska-1, Chiara Milanese-2, Ivan Saldan-1,2, Roman Serkiz-3, Orest Pereviznyk-1, Oleksandr Reshetnyak-1, Orest Kuntyi-4

1 Ivan Franko National University of Lviv, 6, Kyryla and Mefodia St., 79005 Lviv, Ukraine; 
2 Pavia H2 Lab, C.S.G.I. & Department of Chemistry, Physical Chemistry Section, University of Pavia, Viale Taramelli 16, Pavia 27100, Italy
3 Center of Low-Temperature Studies, Ivan Franko National University of Lviv, 50, Dragomanova St., 79005 Lviv, Ukraine
4 Lviv Polytechnic National University, 12 Bandery St., 790013 Lviv, Ukraine
 

Electroactive composites made of polyaniline and MWCNT modified by aminobenzene groups were electrochemically synthesized. SEM observation confirms that the composites become more porous as the MWCNT aggregation on the electrode surface gradually increases. Paraboloid dependence of specific electrical conductivity on the MWCNT content was found for the composites with more than 2.0 wt % of MWCNT. Obtained results confirmed a strong relationship between the surface and electrical properties allowing to offer their optimization using different amount of MWCNTs and preparation procedure.

[1] Volkov S., Kovalchuk E., Ohenko V., Reshentnyak O.: Nanokhimiya. Nanosystemy. Nanomaterialy. Naukova dumka, Kyiv 2008.
[2] Eftekhari A.: Nanostructured Conductive Polymers. Wiley, Weinheim 2010. https://doi.org/10.1002/9780470661338
[3] Chiang J., MacDiarmid A.: Syn. Met., 1986, 13, 193. https://doi.org/10.1016/0379-6779(86)90070-6
[4] Feast W., Tsibouklis J., Pouwer K. et al.: Polymer, 1996, 37, 5017. https://doi.org/10.1016/0032-3861(96)00439-9
[5] Abalyayeva V., Bogatyrenko V., Anoshkin A. et al.: Macromol. Comp., 2010, 52, 724.
[6] Kinlen P., Liu J., Ding Y. et al.: Macromolecules, 1998, 31, 1735. https://doi.org/10.1021/ma971430l
[7] Kovalyshyn Y., Gudz Y., Reshetnyak O. et al.: Proceed. Int. Symp. on Functional Materials and Nanotechnologies, Lithuania, Vilnius 2015, 152.
[8] Sementsov Yu., Melezhyk A., Prykhodko D. et al.: Fizika i Khimiya Nanomaterialov i Macromolecularnye Struktury. Naukova dumka, Kyiv 2007.
[9] Maas G., Tanaka M., Sakakura T.: E-eros Encyclopedia of Reagents for Organic Synthesis. Wiley, Chichester 2001.
[10] Dombrovski A., Naydan V.: Organichna Khimiya. Vyd-vo Lviv Nat. Univ., Lviv 1992.
[11] Kovalchuk E., Tomilov A., Krupak A. et al.: Rus. J. Electrochem., 2011, 47, 1125. https://doi.org/10.1134/S1023193511100077
[12] Kovalchuk, E., Krupak A., Ohenko V.: Nanostruct. Mater. Sci., 2009, 2, 69.
[13] Vasylchenko O.: PhD thesis, Kharkiv Polytechnic University, Kharkiv 1995.
[14] Pokhodenko V., Krylov V.: Theor. Exp. Chem., 1994, 3, 111. https://doi.org/10.1007/BF00538188
[15] Cai L., Zhou S.: J. Electroanal. Chem., 1997, 421, 45. https://doi.org/10.1016/S0022-0728(96)04836-X
[16] Yatsyshyn M., Kovalchuk E.: Praci Nauk. Tovar. im. Shevchenka, 2008, 21, 87.
[17] Iijima S.: Nature, 1991, 354, 56. https://doi.org/10.1038/354056a0
[18] Trchova M., Sedenkova I., Konyushenko E. et al.: J. Phys. Chem. B, 2006, 110, 9461. https://doi.org/10.1021/jp057528g