Solubility of Ibuprofen in Conventional Solvents and Supercritical CO2: Evaluation of Ideal and Non-Ideal Models

2019;
: pp. 1-10
1
Department of Chemical Engineering, College of Engineering, Shahid Bahonar University of Kerman
2
Department of Chemical Engineering, College of Engineering, Shahid Bahonar University of Kerman
3
Department of Chemical Engineering, College of Engineering, Shahid Bahonar University of Kerman

In this study solubility of racemic (R/S)(±)-ibuprofen in pure conventional solvents (n-heptane, toluene, benzene and ethanol) and supercritical carbon dioxide is predicted and the results are compared with experimental data. The results of the ideal solubility show great deviation from experimental points. However, it seems that liquid phase non-ideality is the main problem in the modeling of this system. To capture the non-ideality of the system UNIQUAC, UNIFAC, NRTL, Wilson, and regular-solution theory are used. The results prove that UNIQUAC is more appropriate than regular-solution theory and UNIFAC for calculation of racemic (R/S)(±)-ibuprofen solubility data. Also, the solubility of (R/S)(±)-ibuprofen in supercritical CO2 (SC-CO2) was investigated by using Peng-Robinson equation of state (PR EoS). The results of modeling are in good agreement with experimental data.

[1] Chen Y. H.: PhD. thesis, Initial Solvent-screening of Racemic (R/S)(±)-Ibuprofen and Crystallization Kinetics of Ibuprofen Sodium salts. National Central University, Taiwan 1996.
[2] Charoenchaitrakool M., Dehghani F., Foster N., Chan H.: Ind. Eng. Chem. Res., 2000, 39, 4794. https://doi.org/10.1021/ie000151a
[3] Potthast H., Dressman J., Junginger H. et al.: J. Pharm. Sci., 2005, 94, 2121. https://doi.org/10.1002/jps.20444
[4] Wang Sh., Song Zh., Wang J. et al.: J. Chem. Eng. Data, 2010, 55, 5283. https://doi.org/10.1021/je100255z
[5] Rashid A., White E., Howes T. et al.: J. Chem. Eng. Data, 2014, 59, 2699. https://doi.org/10.1021/je400819z
[6] Dun W., Wu S., Tang W. et al.: J. Chem. Eng. Data, 2014, 59, 3415. https://doi.org/10.1021/je5004093
[7] Spyriouni Th., Krokidis X., Economou I.: Fluid Phase Equilibr., 2011, 302, 331. https://doi.org/10.1016/j.fluid.2010.08.029
[8] Prausnitz J., Lichtenthaler R., De Azevedo E.: Molecular Thermodynamics of Fluid-Phase Equilibria. Prentice Hall. New Jersey 1999.
[9] Hojjati H., Rohani S.: Org. Process Res. Dev., 2006, 10, 1110. https://doi.org/10.1021/op060074g
[10] Pacheco D., Manrique Y., Martinez F.: Fluid Phase Equilibr., 2007, 262, 23. https://doi.org/10.1016/j.fluid.2007.07.076
[11] Xu F., Sun L., Tan Z. et al.: Acta Phys. Chim. Sin., 2005, 21, 1. https://doi.org/10.3866/PKU.WHXB20050101
[12] Poling B., Prausnitz J., O’Connell J.: The Properties of Gases and Liquids. McGraw-Hill, New York 2004.
[13] Danesh A.: PVT and Phase Behaviour of Petroleum Reservoir Fluids. Elsevier Science 1998.
[14] Sheikhi-Kouhsar M., Bagheri H., Raeissi R.: Fluid Phase Equilibr., 2015, 395, 51. https://doi.org/10.1016/j.fluid.2015.03.005.
[15] Bagheri H., Ghader S.: J. Mol. Liq., 2017, 236, 172. https://doi.org/10.1016/j.molliq.2017.03.101.