Kinetic Modeling Studies of Enzymatic Purification of Glucomannan

2019;
: pp. 384 - 390
1
Department of Chemical Engineering, Faculty of Engineering, Diponegoro University
2
Department of Chemical Engineering, Faculty of Engineering, Diponegoro University
3
MSc Study Program on Chemical Engineering, University of Diponegoro Jl. Prof. Soedarto, SH, Tembalang Semarang, Indonesia
4
Department of Chemical Engineering, Faculty of Engineering, Diponegoro University
5
Department of Chemical Engineering, Faculty of Engineering, University of Diponegoro, Jl Prof. Soedarto, SH, Tembalang Semarang, Indonesia

Purification of glucomannan by hydrolising starch – the main contaminant – was studied. Hydrolysis removed 88.7 % of starch. The highest glucomannan сontent was found to be 73.35 %. The sample showed the comparable infrared spectra to those of the commercial glucomannan. The kinetics of enzymatic hydrolysis was evaluated using the Michaelis-Menten model.

[1] Wardhani D., Aryanti N., Murvianto F., Yogananda K.: Jurnal Inovasi Teknik Kimia, 2016, 1, 71.

[2] Harmayani E., Aprilia V., Marsono Y.: Carbohydr. Polym., 2014, 112, 475. https://doi.org/10.1016/j.carbpol.2014.06.019

[3] An N., Thien D., Dong N. et al.: Carbohydr. Polym., 2011, 84, 64. https://doi.org/10.1016/j.carbpol.2010.11.021

[4] Chua M., Baldwin T., Hocking T., Chan K.: Carbohydr. Polym., 2012, 87, 2202. https://doi.org/10.1016/j.carbpol.2011.10.053

[5] Hakiim A..: MSc Thesis, University of Diponegoro, Indonesia 2015.

[6] Ohashi S., Shelso G., Moirano A., Drinkwater W.: Pat. US 6162906A, Publ. Dec. 19, 2000.

[7] Xu W., Wang S., Ye T. et al.: Food Chem., 2014, 158, 171. https://doi.org/10.1016/j.foodchem.2014.02.093

[8] Patel A., Singhania R., Pandey A.: Curr. Opin. Food Sci., 2016, 7, 64. https://doi.org/10.1016/j.cofs.2015.12.002

[9] Vincent S., Diane S., Lori G. et al.: Ind. Biotechnol., 2016, 12, 295. https://doi.org/10.1089/ind.2016.0011

[10] AOAC 2005. Official of Analysis of the Association of Official Analytical Chemistry. Washington: AOAC Inc.

[11] Sadasivam S., Manickam A.: Biochemical Methods, 3rd edn. New Age International Pvt Ltd Publishers. New Delhi 2008.

[12] Muntean E.: Bulletin UASVM Agricult., 2011, 68, 344.

[13] Simsek S., El S.: Carbohydr. Polym., 2012, 90, 1204. https://doi.org/10.1016/j.carbpol.2012.06.039

[14] Yook C., Robyt J.: Carbohydr. Res., 2002, 337, 1113. https://doi.org/10.1016/S0008-6215(02)00107-6

[15] Kolusheva T., Marinova A.: J. Univ. Chem. Technol. Metall., 2007, 42, 93.

[16] Hera E., Gomez M., Rosell C.: Carbohydr. Polym., 2013, 98, 421. https://doi.org/10.1016/j.carbpol.2013.06.002

[17] Zhang H., Yin L., Zheng Y., Shen J.: Food Hydrocolloid., 2016, 54, 23. https://doi.org/10.1016/j.foodhyd.2015.09.018

[18] Zheng Y., Zhang H., Yao C. et al.: Food Hydrocolloid., 2015, 48, 312. https://doi.org/10.1016/j.foodhyd.2015.02.036

[19] Nurjanah Z.: BSc thesis, Bogor Agricultural Institute, Indonesia 2010.

[20] Lopez C., Torrado A., Fucinos P. et al.: Enzyme Microb. Technol. 2006, 39, 252. https://doi.org/10.1016/j.enzmictec.2005.10.012

[21] Rodriguez S., Bernik D.: LWT-Food Sci. Technol., 2014, 59, 635. https://doi.org/10.1016/j.lwt.2014.05.034

[22] Khawla B., Sameh M., Imen G. et al.: Ind. Crops Prod., 2014, 52,144. https://doi.org/10.1016/j.indcrop.2013.10.025

[23] Nikolic´ S., Mojovic´ L., Rakin M., Pejin D.: Fuel, 2011, 88, 1602. https://doi.org/10.1016/j.fuel.2008.12.019

[24] Wu J., Zhong Q.: J. Food Eng., 2016, 175, 104. https://doi.org/10.1016/j.jfoodeng.2015.12.010

[25] Mulyono E.: Centre of Research and Development of Agricultural Post Harvest. Indonesia: Program of application research intensive, 2010.

[26] Widjanarko S., Nugroho A., Estiasih T.: Afr. J. Food Sci., 2011, 5, 12.

[27] Franco C., Ciacco C.: Starch, 1992, 44, 422. https://doi.org/10.1002/star.19920441106