Removal of Petroleum from Aqueous Systems by Poly(divinylbenzene) and Poly(methyl methacrylate-divinylbenzene) Resins: Isothermal and Kinetic Studies

2019;
: pp. 399 - 406
1
Universidade Federal do Rio de Janeiro, Instituto deMacromoléculas, Av. Horácio Macedo
2
Universidade Federal do Rio de Janeiro, Instituto de Macromoléculas, Av. Horácio Macedo
3
nstituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Av. República do Paraguai
4
1 Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Macromoléculas (IMA), Laboratório de Macromoléculas e Colóides na Indústria do Petróleo (LMCP), 2 Universidade Federal do Rio de Janeiro (UFRJ), COPPE/PEMM/LADPOL

In this study, the performance of two polymer resins was evaluated, one composed of methyl methacrylate-divinylbenzene (MMA-DVB) and the other of only divinylbenzene (DVB), for adsorption of oil in synthetic oily wastewater. The tests were carried out using two processes: (i) continuous flow, to assess the quantity of oily water that can be eluted until reaching the saturation point of resins; and (ii) batch, to obtain information about the best-fitting kinetic and isotherm models for the two resins. The results for both resins showed better fits to the Freundlich isotherm model and the pseudo-second-order kinetic model. The low activation energy values found suggest physical adsorption between the resins and oil. Although DVB resin has presented slightly better oil removal efficiency than the MMA-DVB one, the results showed that DVB resin can be industrially replaced by MMA-DVB resin, due to the latter advantages: lower cost, lower toxicity and easy regeneration, as indicated by the kinetic and isotherm studies.

[1] Stephenson M.: Soc. Pet. Eng., 1992, 44, 548.

[2] Fakhru’l-Razia A., Pendashteha A., Abdullaha L. et al.: J. Hazard. Mat., 2009, 170, 530. https://doi.org/10.1016/j.jhazmat.2009.05.044

[3] McCormack P., Jones P., Hetheridge M., Rowland S.: Wat. Res., 2001, 35, 3567. https://doi.org/10.1016/S0043-1354(01)00070-7

[4] Lucas E., Mansur C., Spinelli L., Queirós Y.: Pure Appl. Chem., 2009, 81, 473. https://doi.org/10.1351/PAC-CON-08-07-21

[5] Srinivasan A., Viraraghavan T.: Bioresour. Technol., 2010, 101, 6594. https://doi.org/10.1016/j.biortech.2010.03.079

[6] Lucas E., Spinelli L., Khalil C.: Polymers Applications in Petroleum Production [in:] Mark H. (Ed.), Encyclopedia of Polymer Science and Technology. John Wiley & Sons, Inc., 2015. https://doi.org/10.1002/0471440264.pst641

[7] Rajakovic V., Aleksic G., Radetic M., Rajakovic L.: J. Hazard. Mat., 2007, 143, 494. https://doi.org/10.1016/j.jhazmat.2006.09.060

[8] Barrufet M., Burnett D., Mareth D.: SPE Annual Techn. Conf. and Exhib., Dallas 2005, 9.

[9] Tao F., Hobbs R., Sides J. et al.: SPE/EPA Exploration and Production Environmental Conference, San Antonio, 1993, 3.

[10] Souza A., Furtado C.: Bol. Tec. Prod. Petrol. Rio de Janeiro, 2006, 1, 215.

[11] Robinson D.: Filtration + Separation, 2013, 50, 38. https://doi.org/10.1016/S0015-1882(13)70168-X

[12] Bataee M., Irawan S., Ridha S. et al.: SPE Journal, 2017, 22, 1. https://doi.org/10.2118/183627-PA

[13] CONAMA (Conselho Nacional do Meio Ambiente) – Resolution number 393, 2007.

[14] Den Broek W., Plat R., Der Zande M.: SPE Int. Oil and Gas Conf. and Exhib. in China, Beijing 1998.

[15] Munirasu S., Haija M., Banat F.: Proc. Saf. Environ. Prot., 2016, 100, 183. https://doi.org/10.1016/j.psep.2016.01.010

[16] Masqué N., Galià M., Borrull F.: Chromatographia, 1999, 50, 21. https://doi.org/10.1007/BF02493612

[17] Sokker H., El-Sawyb N., Hassan M., El-Anadoul B.: J. Hazard. Mat., 2011, 190, 359. https://doi.org/10.1016/j.jhazmat.2011.03.055

[18] Okiel K., El-Sayed M., El-Kady M.: Egypt. J. Pet., 2011, 20, 9.

[19] Igunnu E., Chen G.: Int. J. Low Carbon Technol., 2014, 9, 157. https://doi.org/10.1093/ijlct/cts049

[20] Li H., Jiao Y., Xu M. et al.: Polymer, 2004, 45, 181. https://doi.org/10.1016/j.polymer.2003.11.013

[21] Huang J., Huang K., Wang A., Yang Q.: J. Colloid Interf. Sci., 2008, 327, 302. https://doi.org/10.1016/j.jcis.2008.09.006

[22] Fontanals N., Galiá M., Cormack P. et al.: J. Chromatogr. A, 2005, 1075, 51. https://doi.org/10.1016/j.chroma.2005.04.010

[23] Dumont P., Fritz J.: J. Chromatogr. A, 1995, 691, 123. https://doi.org/10.1016/0021-9673(94)00766-3

[24] Nash D., McCreath G., Chase H.: J. Chromatogr. A, 1997, 758, 53. https://doi.org/10.1016/S0021-9673(96)00710-8

[25] Iayadene F., Guettaf H., Bencheikh Z. et al.: Eur. Polym. J., 1998, 34, 219. https://doi.org/10.1016/S0014-3057(97)00099-2

[26] Bouvier E., Meirowitz R., McDonald P.: Pat. US 6254780. Publ. Jul. 3, 2001.

[27] Zhou Y., Chen L., Hu X., Lu J.: Ind. Eng. Chem. Res., 2009, 48, 1660. https://doi.org/10.1021/ie8012242

[28] Zhou Y., Tang X., Xiao-Men H. et al.: Sep. Pur. Technol., 2008, 63, 400. https://doi.org/10.1016/j.seppur.2008.06.002

[29] Kundu P., Mishra I.: Sep. Pur. Technol., 2013, 118, 519. https://doi.org/10.1016/j.seppur.2013.07.041

[30] Clarisse M., Queirós Y., Barbosa C. et al.: Chem. Chem. Technol., 2012, 6, 145.

[31] Aversa T., Queirós Y., Lucas E., Louvisse A.: Polímeros, 2014, 24, 45. https://doi.org/10.4322/polimeros.2013.048

[32] Silva C., Rocha Q., Rocha P. et al.: J. Environ. Manag., 2015, 57, 205. https://doi.org/10.1016/j.jenvman.2015.04.025

[33] Cardoso A., Lucas E., Barbosa C.: Polímeros, 2004, 14, 201. https://doi.org/10.1590/S0104-14282004000300017

[34] Queirós Y., Clarisse M., Oliveira R. et al.: Polímeros, 2006, 16, 224. https://doi.org/10.1590/S0104-14282006000300012

[35] Aversa T., Silva C., Rocha Q., Lucas E.: J. Environ. Sci. Health A, 2016, 51, 634. https://doi.org/10.1080/10934529.2016.1159872

[36] Tibbetts P., Buchanan I., Gawel L., Large R.: A Comprehensive Determination of Produced Water Composition [in:] Ray J., Engelhardt F. (Eds.), Produced Water: Technological/Environmental Issues and Solutions. Springer Science & Business Media, New York 1992. https://doi.org/10.1007/978-1-4615-2902-6_9

[37] Galkin A.: J. Anal. Chem., 2004, 50, 1078.

[38] Rendell D.: Fluorescense and Phosforescence. John Wiley & Sons, Bristol 1987.

[39] Adamson A.: Physical Chemistry of Surfaces. John Wiley & Sons, California 1990.

[40] Ho Y., McKay G.: Chem. Eng. Res. Design, 1998, 76, 332.

[41] Sho Y., Wase J. A. D., Forster F. C.: Environ. Technol., 1996, 17, 71. https://doi.org/10.1080/09593331708616362

[42] Smith F., Hashemi J.: Fundamentos de Engenharia e Ciência dos Materiais. McGraw Hill Brasil, Porto Alegre 2012.

[43] Huang J., Jin X., Mao J. et al.: J. Hazard. Mat., 2012, 217, 406. https://doi.org/10.1016/j.jhazmat.2012.03.053

[44] Cheng S., Tang H., Yan H.: J. Appl. Polym. Sci., 2006, 102, 4652. https://doi.org/10.1002/app.24702

[45] Drechny D., Trochimczuk A.: React. Funct. Polym., 2006, 66, 323. https://doi.org/10.1016/j.reactfunctpolym.2005.10.024

[46] Kennedy L., Vijaya J., Sekaran G., Kayalvizhi K.: J. Hazard. Mat., 2007, 149, 134. https://doi.org/10.1016/j.jhazmat.2007.03.061

[47] Teixeira V., Coutinho F., Gomes A.: Quim. Nova, 2004, 27, 754. https://doi.org/10.1590/S0100-40422004000500015

[48] Guimarães D., Leão V.: J. Hazard. Mat., 2014, 280, 209. https://doi.org/10.1016/j.jhazmat.2014.07.071

[49] Azizian S.: J. Colloid Interf. Sci., 2004, 276, 47. https://doi.org/10.1016/j.jcis.2004.03.048

[50] Plazinski W., Dziuba J., Rudzinski W.: Adsorption, 2013, 19, 1055. https://doi.org/10.1007/s10450-013-9529-0