Determination of the Combustion Characteristics of Chikila Coal Through the Kissinger Kinetics Model

2020;
: pp. 433 - 438
1
Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia

The combustion characteristics of Chikila coal (CHK) from Nigeria have been examined. It was established that CHK has a high carbon and fixed carbon content, but low nitrogen, sulphur, and ash content. Based on coal heating value, it was classified as a high volatile B bituminous coal. The temperature profile characteristics were examined through thermogravimetric analysis. The combustion kinetics of CHK were examined based on the Kissinger model. It is shown that CHK is a potentially good feedstock for future energy recovery and industrial utilization.

  1. IEA, Market Series Report: IEA Coal 2017, Paris, France, 1-8.
  2. Speight J.: The Chemistry and Technology of Coal. CRC Press, Boca Raton 2012, https://doi.org/10.1201/b12497
  3. IEA-WEO 2013. http://bit.ly/1davgFh
  4. OECD Working Paper, 2012. http://www.oecd.org/chile/publicationsdocuments/workingpapers/
  5. Nyakuma BB., Jauro A., Oladokun O. et al.: Petrol. Coal, 2018, 60, 641.
  6. Nyakuma BB., Oladokun O., Jauro A. et al.: IOP Conf. Ser. Mat. Sci. Eng., 2017, 217, 012013. https://doi.org/10.1088/1757-899X/217/1/012013
  7. Iwayemi A.: Int. Assoc. Energ Econ., 2008, 53, 17.
  8. Oyedepo S.: Renew. Sust. Energ. Rev., 2012, 16, 2583. https://doi.org/10.1016/j.rser.2012.02.010
  9. Emodi N.: Energy Policies for Sustainable Development Strategies. Springer, Singapore 2016, 9-67.
  10. Ohimain E.: Int. J. Energ. Power Eng., 2014, 3, 28. https://doi.org/10.11648/j.ijepe.20140301.15
  11. Chukwu M., Folayan C., Pam G. et al.: J. Comb., 2016, 2016. https://doi.org/10.1155/2016/9728278
  12. Sambo A., Garba B., Zarma I., Gaji M.: J. Energ. Power Eng. 2012, 6, 1050. https://doi.org/10.17265/1934-8975/2012.07.005
  13. Nyakuma BB., Oladokun O., Jauro A. et al.: IOP Conf. Ser. Mat. Sci. Eng., 2017, 217, 012012. https://doi.org/10.1088/1757-899X/217/1/012012
  14. Jauro A., Obaje N., Agho M. et al.: Fuel, 2007, 86, 520. https://doi.org/10.1016/j.fuel.2006.07.031
  15. Sonibare O., Jacob D., Foley S.: Energ. Source. Part A, 2013, 35, 753. https://doi.org/10.1080/15567036.2010.514781
  16. Ayinla H., Abdullah W., Makeen Y. et al.: Int. J. Coal Geol., 2017, 173, 212. https://doi.org/10.1016/j.coal.2017.02.011
  17. Ryemshak S., Jauro A.: Int. J. Ind. Chem., 2013, 4, 7. https://doi.org/10.1186/2228-5547-4-7
  18. Nasirudeen M., Jauro A.: J. Minerals Mat. Charact. Eng., 2011, 10, 101. https://doi.org/10.4236/jmmce.2011.101007
  19. Odeh A.: Energy, 2015, 87, 555. https://doi.org/10.1016/j.energy.2015.05.019
  20. Ayinla H., Abdullah W., Makeen Y. et al.: Int. J. Coal Geol., 2017, 180, 67. https://doi.org/10.1016/j.coal.2017.06.010
  21. Sonibare O., Ehinola O., Egashira R. et al.: J. Appl. Sci., 2005, 5, 104. https://doi.org/10.3923/jas.2005.104.107
  22. Nkafamiya I., Makan S., Akinterinwa A. et al.: Am. J. Chem., 2017, 7, 67-72. https://doi.org/10.5923/j.chemistry.20170703.01
  23. Jauro A., Chigozie A., Nasirudeen M.: Sci. World J., 2008, 3. https://doi.org/10.4314/swj.v3i2.51799
  24. Donahue C., Rais E.: J. Chem. Educ., 2009, 86, 222. https://doi.org/10.1021/ed086p222
  25. Slopiecka K., Bartocci P., Fantozzi F.: Appl. Energ., 2012, 97, 491. https://doi.org/10.1016/j.apenergy.2011.12.056
  26. Vassilev S., Vassileva C., Vassilev V.: Fuel, 2015, 158, 330. https://doi.org/10.1016/j.fuel.2015.05.050
  27. ASTM D388-12. https://www.astm.org/DATABASE.CART/HISTORICAL/D388-12.htm
  28. Sonibare O., Haeger T., Foley S.: Energy, 2010, 35, 5347. https://doi.org/10.1016/j.energy.2010.07.025
  29. Damartzis T., Vamvuka D., Sfakiotakis S. et al.: Biores. Tech., 2011, 102, 6230. https://doi.org/10.1016/j.biortech.2011.02.060
  30. Nyakuma BB., Jauro A., Oladokun O. et al.: J. Phys. Sci., 2016, 27, 1. https://doi.org/10.1515/gse-2016-0017