Biosynthesis and Characteristics of Polyhydroxyalkanoates. 1. Polyhydroxybutyrates of Azotobacter vinelandii N-15

: pp. 463 - 467
Department of PhChFF InPOCC NAS of Ukraine
Department of PhChFF InPOCC NAS of Ukraine, L.M. Lytvynenko Institute of Physical Organic Chemistry and Coal Chemistry of the NAS of Ukraine
Lviv Polytechnic National University
Department of PhChFF InPOCC NAS of Ukraine, L.M. Lytvynenko Institute of Physical Organic Chemistry and Coal Chemistry of the NAS of Ukraine
Institute of Physical-Organic Chemistry and Coal Chemistry named after L. M. Lytvynenko of the National Academy of Sciences of Ukraine, Department of Technology of Biologically Active Substances, Pharmacy & Biotechnology, Lviv National Polytechnic University
Lviv Polytechnic National University

The biosynthesis of cellular polymers of Azotobacter vinelandii N-15 strain using molasses as a carbon source has been optimized. The highest yield of polymer (25.8 % of cell mass) was obtained on a nutrient medium with a molasses concentration of 50 g/l. Using TL-chromatography and IR-spectroscopy the obtained product was identified as polyhydroxybutyrate (PHB), and its properties were investigated. The wetting contact angle was used to characterize the biopolymer film surface properties. According to the results of thermal and thermomechanical studies, it was found that the obtained РHB is characterized by a high thermal stability and heat resistance: the melting point is 462 K; deep destruction and thermooxidative processes begin at the temperatures above 567 K.

  1. Abe H., Doi Y.: Molecular and material design of biodegradable poly(hydroxyl-alkonate)s' [in:] Doi Y., Steinbuchel A. (Eds.), Biopolymers 3b, Polyesters II. Wiley-VCH, Weinheim 2002,105-132.
  2. Shah A., Hasan F., Hameed A., Ahmed S.: Biotech. Adv., 2008, 26, 246.
  3. Khanna S.; Srivastava A.: Proc. Biochem., 2005, 40, 607.
  4. Bugnicourt E., Cinelli P., Lazzeri A., Alvarez V.: Express Polym. Lett., 2014, 8, 791.
  5. Padermshoke A., Katsumoto Y., Sato H. et al.: Spectrochim. Acta. A, 2005, 61, 541.
  6. Slepickova Kasalkova N., Slepicka P., Kolska Z., Svorcik V.: Wettability and other Surface Properties of Modifies Polymers. InTech 2015.
  7. Chen G., Wu Q.: Biomaterials, 2005, 26, 6565.
  8. Shishatskaya E., Voinova O., Goreva A. et al.: J. Mater. Sci., 2008, 19, 2493.
  9. Saini S., Rao P., Patil Y.: Procedia Soc. Behav. Sci., 2012, 37, 407.
  10. Halami P.: World J. Microbiol. Biotechnol., 2008, 24, 805.
  11. Kunasundari B., Sudesh K.: Express Polym. Lett., 2011, 5, 620.
  12. Tejera N., Lluch C., Martínez-Toledo M., González-López J.: Plant Soil, 2005, 270, 223.
  13. Page W.: FEMS Microbiol. Lett., 1992, 103, 149.
  14. Gerhardt P., Murray R., Wood W., Krieg N.: Methods for General and Molecular Bacteriology. Am. Soc. for Microbiol., Washington 1994.
  15. Semeniuk I., Kochubei V., Skorokhoda V. et al.: Chem. Chem. Technol., 2020, 14, 26.
  16. Semeniuk I., Kocubei V., Karpenko O. et al.: Voprosy Khimii i Khimicheskoi Tekhnologii, 2019, 4, 150.
  17. Telteibaum B.: Termomechancheskiy Analiz Polimerov. Nauka, Moskva 1979.
  18. Panda B., Sharma L., Singh A., Mallick N.: Indian J. Biotechnol., 2008; 7, 230.
  19. Bonartsev A., Yakovlev S., Zharkova I. et al.: BMC Biochem., 2013, 14, 12.
  20. Nisha J., Mudaliar N., Senthilkumar P., Samrot A.: African J. Microbiol. Res., 2012, 6, 3623.
  21. Mohapatra S., Samantaray D., Samantaray S.: Indian J. Sci. Technol., 2015, 8, 1.