Removal of lead from aqueous solutions was studied using nanocomposite absorbent of bentonite/γ-alumina. The novel absorbent was characterized using XRD, FT-IR and SEM-EDX. Absorption process optimization using response surface methodology (RSM) and experimental design was performed with central composite design technique. The effects of Pb(II) initial concentration, adsorbent dosage, and composite percentage on Pb(II) removal percentage and adsorption capacity were examined. The adsorption capacity of 166.559 mg/g and removal % of 82.9887 with desirability equal to 0.763 were obtained for optimal initial concentration of 200 mg•1-1, adsorbent dosage of 0.5 mg•1-1, and composite percentage of 7.08 % determined using RSM design. The equilibrium adsorption data were investigated by Langmuir, Freundlich and Dubinin-Radushkevich isotherm models. It was found that Freundlich isotherm model fits better compared with other models.
- Gumpu M., Sethuraman S., Krishnan U., Rayappan J.: Sensor Actuat.B-Chem, 2015, 213, 515. https://doi.org/10.1016/j.snb.2015.02.122
- Barakat M.: Arab. J. Chem., 2011, 4, 361. https://doi.org/10.1016/j.arabjc.2010.07.019
- Fu F., Wang Q.: J. Environ.Manage., 2011, 92, 407. https://doi.org/10.1016/j.jenvman.2010.11.011
- Aminul Islam Md., Morton D., Johnson B.et al.: J.Water Process. Eng., 2018, 26, 264. https://doi.org/10.1016/j.jwpe.2018.10.018
- Lu F., Astruc D.: Coord. Chem. Rev.,2018, 365, 147. https://doi.org/10.1016/j.ccr.2017.11.003
- Singh N., Nagpal G., Agrawal S., Rachna: Environ. Technol. Innovat., 2018, 11, 187. https://doi.org/10.1016/j.eti.2018.05.006
- Babel S.: J. Hazard. Mater., 2003, 97, 219. https://doi.org/10.1016/s0304-3894(02)00263-7
- Yuan L., Liu Y.: Chem. Eng. J., 2013, 215, 432. https://doi.org/10.1016/j.cej.2012.11.016
- Hua M., Zhang S., Pan B.et al.: J. Hazard. Mater., 2012, 211, 317. https://doi.org/10.1016/j.jhazmat.2011.10.016
- Bhat A., Megeri G., Thomas C.et al.: J. Environ.Chem. Eng., 2015, 3, 30. https://doi.org/10.1016/j.jece.2014.11.014
- Sadeghalvad B., Karimi H., Hosseinzadegan H., Azadmehr A.: Desalin.Water Treat., 2014, 52, 6440. https://doi.org/10.1080/19443994.2013.823352
- Myers R., Montgomery D., Anderson-Cook C.: Response Surface Methodology: Process and Product Optimization using Designed Experiments, 4ndedn. John Wiley & Sons 2016.
- Murugesan A., Vidhyadevi T., Kalaivani S.et al.: J. Water Process. Eng., 2014, 3, 132. https://doi.org/10.1016/j.jwpe.2014.06.004
- Zhen H., Xu-Tao Z., Gui-Qing X.: Proceed. Int. Conf. on Technology Innovation and Industrial Management, 2013, 120.
- Ahmad R., Hasan I.: Environ.Nanotechn., Monitor. Manage., 2016, 6, 116. https://doi.org/10.1016/j.enmm.2016.09.002
- Kaynar Ü., Şabikoğlu I., Kaynar S.,Eral M.: Appl. Radiat. Isot., 2016, 115, 280. https://doi.org/10.1016/j.apradiso.2016.06.033
- Savasari M., Emadi M., Bahmanyar M., Biparva P.: J. Ind. Eng. Chem., 2015, 21, 1403. https://doi.org/10.1016/j.jiec.2014.06.014
- Hamane D., Arous O., Kaouah F.et al.: J. Environ.Chem. Eng., 2015, 3, 60. https://doi.org/10.1016/j.jece.2014.11.003
- Kalantari K., Ahmad M., Masoumi H.et al.: Int. J. Mol. Sci., 2014, 15, 12913. https://doi.org/10.3390/ijms150712913
- Zamani S., Salahi E., Mobasherpour I.: Res.Chem.Intermed., 2014, 40, 1753. https://doi.org/10.1007/s11164-013-1078-3
- Toor M., Jin B., Dai S., Vimonses V.: Ind. Eng. Chem. Res., 2015, 21, 653. https://doi.org/10.1016/j.jiec.2014.03.033
- Ranđelović M., Purenović M., Zarubica A.et al.: J. Hazard. Mater., 2012, 199, 367. https://doi.org/10.1016/j.jhazmat.2011.11.025
- Can N., Ömür B., Altındal A.: Sensor. Actuat. B-Chem., 2016, 237, 953. https://doi.org/10.1016/j.snb.2016.07.026
- Mobasherpour I., Salahi E., Ebrahimi M.: Res. Chem. Intermed., 2012, 38, 2205. https://doi.org/10.1007/s11164-012-0537-6
- Mobasherpour I., Salahi E., Pazouki M.: Desalination, 2011, 266, 142. https://doi.org/10.1016/j.desal.2010.08.016
- Doğan M., Alkan M., Demirbaş Ö.et al.: Chem. Eng. J., 2006, 124, 89. https://doi.org/10.1016/j.cej.2006.08.016