Kinetic Model for Dissolution of Cement Copper in Sulfuric Acid Solutions Containing Cupric Ions

2021;
: pp. 395–402
1
Department of Chemical Engineering, Faculty of Engineering, İnönü University
2
Department of Chemical Engineering, Faculty of Engineering, İnönü University

In this paper, the dissolution kinetics of cement copper powder in sulfuric acid solutions containing cupric ions was examined. It was observed that the dissolution rate of copper increased with increasing the acid concentration, temperature, and stirring speed. It was determined that the dissolution rate of copper enhanced with increasing the cupric ion concentration up to 0.025 M. It was found that the temperature and concentration of cupric ion had more considerable effects on the dissolution of copper powder. The kinetic analysis of the process was performed, and it was observed that it fits the first order pseudo-homogenous reaction model. The activation energy was calculated to be 31.1 kJ/mol.

  1. Venkatachalam S.: Hydrometallurgy. Narosa Publishing House, Delhi, India 1998.
  2. Noubactep C.: J. Hazard. Mater., 2010, 81, 1170. https://doi.org/10.1016/j.jhazmat.2010.05.085
  3. Demirkıran N.: Rev. Chim., 2013, 64, 378.
  4. Shishkin A., Mironovs V., Vu H. et al.: Metals, 2018, 8, 920. https://doi.org/10.3390/met8110920
  5. Habashi F.: Handbook of Extractive Metallurgy. Wiley, New York 1997.
  6. Karavasteva M.: Hydrometallurgy, 2005, 76, 149. https://doi.org/10.1016/j.hydromet.2004.10.003
  7. Gana R., Figueroa M., Sanchez J.M., Esteso M.: J. Appl. Electrochem., 1995, 25, 240. https://doi.org/10.1007/BF00262962
  8. Figueroa M., Gana R., Kattan L. et al.: J. Appl. Electrochem., 1997, 27, 99. https://doi.org/10.1023/A:10264792
  9. Ekmekyapar A., Demirkıran N., Künkül A. et al.: Braz. J. Chem. Eng., 2015, 32, 155. https://doi.org/10.1590/0104-6632.20150321s00003211
  10. Tanaydın M., Demirkıran N.: Sep. Sci. Technol., 2019, 54, 815. https://doi.org/10.1080/01496395.2018.1512619
  11. Demirkıran N.: Ind. Eng. Chem. Res., 2013, 52, 8157. https://doi.org/10.1021/ie400438b
  12. Wong D., Coller B., Macfarlane D.: Electrochim. Acta, 1993, 38, 2121. https://doi.org/10.1016/0013-4686(93)80350-9
  13. Grishina E., Udalova A., Rumyantsev E.: Russ. J. Electrochem., 2002, 38, 155. https://doi.org/10.1016/0013-4686(93)80350-9
  14. Sribnyi V., Kuntyi O., Yavors'kyi V.: Mater. Sci., 2001, 37, 524. https://doi.org/10.1023/A:10132266
  15. Sameh S., Salih I., Alwash S., Al-Waisty A.: Eng. Technol. J., 2009, 27, 993.
  16. Baeshov A., Kadirbayua A., Jurinov M.: Int. J. Chem. Sci., 2014, 12, 1009.
  17. Park I., Yoo K., Alorro R. et al.: Mater. Trans., 2017, 58, 1500. https://doi.org/10.2320/matertrans.M2017147
  18. Khalid M., Hamuyuni J., Agarwal V. et al.: J. Clean. Prod., 2019, 215, 1005. https://doi.org/10.1016/j.jclepro.2019.01.083
  19. Castillo J., Sepúlveda R., Araya G. et al.: Minerals, 2019, 9, 319. https://doi.org/10.3390/min9050319
  20. Koyama K., Tanaka M., Lee J.: Mater.Trans., 2006, 47, 1788. https://doi.org/10.2320/matertrans.47.1788
  21. Read A.: J. Phys. Chem., 1972, 76, 3656. https://doi.org/10.1021/j100668a026
  22. Wen C.: Ind. Eng. Chem.,1968, 60, 34. https://doi.org/10.1021/ie50705a007
  23. Levenspiel O.: Chemical Reaction Engineering. John Wiley, New York 1972.
  24. Mazet N.: Int. Chem. Eng., 1992, 32, 271.
  25. Lambert F., Gaydardzhiev S., Léonard G. et al.: Miner. Eng., 2015, 76, 38. https://doi.org/10.1016/j.mineng.2014.12.029