Kinetic Regularities and Mathematical Modelling of Potassium Chloride Dissolution

2021;
: pp. 148 - 152
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University

The dissolution process of potassium chloride particles in the apparatus with two-blade mechanical stirrer was investigated and the mass transfer coefficient was determined. The experimental results were generalized by criterion dependence. The independence of the mass transfer coefficient from the solid particles diameter was confirmed. A countercurrent process of potassium salt dissolution in two apparatuses with a mechanical stirring was considered. A mathematical model for countercurrent dissolution was developed and the efficiency of this process was determined.

  1. Zdanovskyi, A.: Galurgia. Khimia, Leningrad 1972.
  2. Akselrud G., Molczanov A.: Rastvoreniye Tviordykh Veshczestv. Khimia, Moskva 1977.
  3. Stankovic S., Moric I., Pavic A.,Vojnovic S. et al.: J. Serb. Chem. Soc., 2015, 80, 391. https://doi.org/10.2298/JSC140411097S
  4. Okuniewski M., Ramjugernath D., Paramespri N., Domanska U.: J. Chem. Thermodyn., 2014, 77, 23. https://doi.org/10.1016/j.jct.2014.04.021
  5. Tully G., Hou G., Glen B.: Chem. Eng. Data, 2016, 61, 594. https://doi.org/10.1021/acs.jced.5b00746
  6. Shvartsev B., Gelman D., Komissarov I., Epshtein A. et al.: Chem. Phys. Chem., 2015, 16, 370. https://doi.org/10.1002/cphc.201402627
  7. Zou F., Zhuang W., Wu J. et al.: J. Chem. Themodyn., 2014, 77, 14. https://doi.org/10.1016/j.jct.2014.04.023
  8. Yu X., Shen Z., Sun Q. et al.: J. Chem. Eng. Data, 2016, 61, 1236. https://doi.org/10.1021/acs.jced.5b00880
  9. Zhao H., Chen J., Liu C. et al.: J. Chem. Eng. Data, 2015, 60, 3201. https://doi.org/10.1021/acs.jced.5b00417
  10. MacCarthy J., Nosrati A., Skinner W., Addai-Mensah J.: Chem. Eng. Res. Des., 2014, 92, 2509. https://doi.org/10.1016/j.cherd.2014.02.020
  11. Huang X., Wang J., Hao H. et al.: Fluid Phase Equilibria, 2015, 394, 148. https://doi.org/10.1016/j.fluid.2015.03.022
  12. Morgenstern L.: Teor. Osnovy Khim. Tekhn., 2014, 48, 122.
  13. Khacevycz O., Artus M., Kostiv I.: Khim. Prom. Ukrainy, 2015, 3, 37.
  14. Artus M., Kostiv I.: Khim. Prom.Ukrainy, 2015, 6, 39.
  15. Symak D., Atamaniuk V., Gumnitskyy Y.: Chem. Chem. Technol., 2015, 9, 493. https://doi.org/10.23939/chcht09.04.493
  16. Babenko Yu., Ivanov, E.: Teor. Osnovy Khim. Tekhn., 2015, 47, 624.
  17. Gumnitsky J., AtamaniukV., Symak D.: Integr. Technol. ta Energozbererzennia, 2017, 4, 23.
  18. Sabadash V., Mylanyk O., Matsutska O., Gumnytsky J.: Chem. Chem. Technol., 2017, 11, 459. https://doi.org/10.23939/chcht11.04.459
  19. Patil V., Joshi J., Sharma M.: Chem. Eng. Res. Des., 1984, 62, 247. https://doi.org/10.1002/cjce.5450620210
  20. Wang Z., Zhou J., Zhu J. et al.: Huagong xuebao = SIESC J., 2015, 66, 1001.
  21. Frikha N., Hmercha A., Gabsi S.: Can. J. Chem. Eng., 2014, 92, 1829. https://doi.org/10.1002/cjce.21986
  22. Viten'ko T., Gumnitskii J.: Theor. Found. Chem. Eng., 2006, 40, 598. https://doi.org/10.1134/S0040579506060078
  23. Gumnitsky J, Symak D., Nagurskyy O.: Naukovi praci ONAChT, 2015, 47, 130.
  24. Gumnitsky J., Yurym M., Venger L.: Visnyk NU ”Lvivska Politechnika”, 2003, 488, 220.
  25. Symak D., Atamaniuk V., Sklabinskyy V. et al.: Naukovyy Visnyk NLTU, 2018, 28, 117.