One-Dimensional Hydrogen-Bonded N–H…O in the Hybrid Phosphate: Hirshfeld Surface Analysis and DFT Quantum Chemical Calculations

2021;
: pp. 359–368
1
Laboratory of Materials, Electrochemistry and Environment Faculty of Sciences, Chemistry Department, Ibn Tofail University
2
Laboratory of Materials Chemistry and Biotechnology of Natural Products, Moulay Ismail University
3
Laboratory of Materials, Electrochemistry and Environment Faculty of Sciences, Chemistry Department, Ibn Tofail University

In the present work the 3D-supramolecular network is stabilized by N–H…O and O–H…O hydrogen bonds, by O…N interactions involving the organic cation and inorganic anion as checked by Hirshfeld surface analysis. The van der Waals contacts play a key role in the consolidation of the packing of 4-chloro-2-methylanilinium dihydrogenphosphate[4-CMDHP] structure. In order to support experimental results, density functional theory calculations have been performed using B3LYP functional with 3-21 G basis set. All of the obtained theoretical results are in a perfect agreement with the experimental ones. Furthermore, nonlinear optical behavior of 4-CMDHP has been investigated by determining the Hirshfeld surface, density of states and HOMO-LUMO energy gap using the same basis set. Finally, the molecular electrostatic potential surface of 4-CMDHP molecule was simulated and discussed.

  1. Judeinstein P., Sanchez C.: J. Mater. Chem, 1996, 6, 511. https://doi.org/10.1039/JM9960600511
  2. Adhikari S., Kar T., Seth S.: RSC Adv., 2016, 6, 99139. https://doi.org/10.1039/C6RA21466E
  3. Lehn J.-M.: Supramolecular Chemistry, 1st edn. Wiley-VCH, New York 1995. https://doi.org/10.1002/3527607439
  4. Etter M., Frankenbach G.: Chem. Matter., 1989, 1, 10. https://doi.org/10.1021/cm00001a005
  5. Vishweshwar P., McMahon J., Bis J., Zaworotko M.: J. Pharm. Sci., 2006, 95, 499. https://doi.org/10.1002/jps.20578
  6. Frisch M., Trucks G., Schlegel H. et al.: Gaussian 03, Gaussian, Inc. Wallingford CT, 2004.
  7. Dennington R., Keith T., Millam J.: Gauss View, Version 5, Semichem, Shawnee Mission KS, 2009.
  8. Clementi E., RoettiC.: Atom. Data Nucl. Data, 1974, 14, 177. https://doi.org/10.1016/S0092-640X(74)80016-1
  9. SpackmanM., Jayatilaka D.: Cryst. Eng. Comm., 2009, 11, 19. https://doi.org/10.1039/B818330A
  10. Spackman M.: Phys. Scr., 2013, 87, 048103. https://doi.org/10.1088/0031-8949/87/04/048103
  11. Turner M., McKinnon J., Jayatilaka D., Spackman M.: Cryst. Eng. Comm., 2011, 13, 1804. https://doi.org/10.1039/C0CE00683A
  12. McKinnon J., Jayatilaka D., Spackman M.: Chem. Commun., 2007, 161, 3814. https://doi.org/10.1039/b704980c
  13. Spackman M., McKinnon J., Jayatilaka D.: Cryst. Eng. Comm., 2008, 10, 377. https://doi.org/10.1039/B715227B
  14. Hirshfeld F.: Theor. Chim. Acta, 1977, 44, 129. https://doi.org/10.1007/BF00549096
  15. Luo Y., Mao Q., Sun B.: Inorg. Chim. Acta, 2014, 412, 60. https://doi.org/10.1016/j.ica.2013.12.005
  16. Luo Y., Sun B.: Cryst. Growth. Des., 2013, 13, 2098. https://doi.org/10.1021/cg400167w
  17. Desiraju G., Gavezzotti A.: Acta Crystallogr. B, 1989, 45, 473. https://doi.org/10.1107/S0108768189003794
  18. Wolff S., Grimwood D., McKinnon J. et al.: Crystal Explorer 3.1, University of Western Australia, Perth 2012.
  19. Scrocco E., Tomasi J.: Top. Curr. Chem., 1973, 42, 95. https://doi.org/10.1007/3-540-06399-4_6
  20. Lipkowitz K., Boyd D. (Eds.): Reviews in Computational Chemistry, vol. 2. Wiley-VCM, New York 1991. https://doi.org/10.1002/9780470125793
  21. Naray-Szabo G., Ferenczy G.: Chem. Rev.,1995, 95, 829. https://doi.org/10.1021/cr00036a002
  22. Jamroz M., Dobrowolski J., Brzozowski R.: J. Mol. Struct., 2006, 787, 172. https://doi.org/10.1016/j.molstruc.2005.10.044
  23. Bellamy L.: The infrared Spectra of Complex Molecules, vol. 2, 2nd edn. Chapman and Hall, London 1990.
  24. Fukui K.: Science, 1982, 218, 747. https://doi.org/10.1126/science.218.4574.747
  25. Buyukuslu H., Akdogan M., Yildirim G., Parlak C.: Spectrochim. Acta A, 2010, 75, 1362. https://doi.org/10.1016/j.saa.2010.01.003
  26. Parr R., Donnelly R., Levy M., Palke W.: J. Chem. Phys., 1978, 68, 3801. https://doi.org/10.1063/1.436185
  27. Parr R., Pearson R.: J. Am. Chem. Soc., 1983, 105, 7512. https://doi.org/10.1021/ja00364a005
  28. Parr R., Szentpaly L., Liu S.: J. Am. Chem. Soc., 1999, 121, 1922. https://doi.org/10.1021/ja983494x
  29. Saeidian H., Sahandi M.: J. Mol. Struct., 2015, 1100, 486. https://doi.org/10.1016/j.molstruc.2015.07.069
  30. Gokçe H., Bahçeli S.: Spectrochim. Acta A, 2013, 114, 61. https://doi.org/10.1016/j.saa.2013.04.112
  31. Kohn W., Becke A., Parr R.: J. Phys. Chem., 1996, 100, 12974. https://doi.org/10.1021/jp960669l
  32. Seth S.K., Banerjee S., Kar T.: J. Mol. Struct., 2010, 965, 45. https://doi.org/10.1016/j.molstruc.2009.11.036
  33. Pearson R.: Proc. Natl. Acad. Sci. USA, 1986, 83, 8440. https://doi.org/10.1073/pnas.83.22.8440
  34. Mulliken R.: J. Chem. Phys., 1955, 23, 1833. https://doi.org/10.1063/1.1740588
  35. Hoffmann R.: Solids and Surfaces: A Chemist's View of Bonding in Extended Structures. VCH Publ., New York 1988.
  36. Hughbanks T., Hoffmann R.: J. Am. Chem. Soc., 1983, 105, 3528. https://doi.org/10.1021/ja00349a027
  37. Małecki J.: Polyhedron, 2010, 29, 1973. https://doi.org/10.1016/j.poly.2010.03.015
  38. O'Boyle N., Tenderholt A., Langner K.: J. Comp. Chem., 2008, 29, 839. https://doi.org/10.1002/jcc.20823
  39. Chen M., Waghmare U., Friend C., Kaxiras E.: J. Chem. Phys., 1998, 109, 6854. https://doi.org/10.1063/1.477252
  40. Mulliken R.: J. Am. Chem. Soc., 1952, 74, 811. https://doi.org/10.1021/ja01123a067
  41. Mulliken R.: J. Chem. Phys., 1955, 23, 1833. https://doi.org/10.1063/1.1740588