Cobalt Ferrite Nanocomposite as Electrochemical Sensor for The Detection of Guanine, Uric Acid and Their Mixture

2021;
: pp. 520–525
1
Department of Chemistry, GLA University
2
Department of Chemistry, G.L.A. University, Mathura, U.P., India
3
Department of Chemistry, GLA University
4
Department of Chemistry, University of Zululand
5
Department of Chemistry, GLA University

Cobalt ferrite nanocomposite was synthesized and characterized by analytical techniques such as FESEM, EDS and XRD. The average crystallite size was found to be in the range of 10–12 nm with a cubic structure. Further, the nanocomposite was used for the detection of guanine (GU) and uric acid (UA) and found to be an efficient electrode modifier. The lower limit of detection for GU and UA was found to be 300 nM and 400 nM, respectively

  1. Lavanya N., Sekar C., Murugan R., Ravi G.: Mater. Sci. Eng. C, 2016, 65, 278. https://doi.org/10.1016/j.msec.2016.04.033
  2. Yari A., Derki S.: Sensor Actuat. B-Chem., 2016, 227, 456. https://doi.org/10.1016/j.snb.2015.12.088
  3. Li J., Jiang J., Feng H. et al.: RSC Adv., 2016, 6, 31565. https://doi.org/10.1039/C6RA01864E
  4. Wang H., Ren F., Wang C. et al.: RSC Adv., 2014, 4, 26895. https://doi.org/10.1039/C4RA03148B
  5. Pradhan S., Das R., Biswas S. et al.: Electrochim. Acta, 2017, 238, 185. https://doi.org/10.1016/j.electacta.2017.04.023
  6. Pradhan S., Biswas S., Das D. et al.: New J. Chem., 2018, 42, 564. https://doi.org/10.1039/C7NJ03308G
  7. Chokkareddy R., Bhajanthri N., Redhi G.: Indian J. Chem. A, 2018, 57, 887. http://nopr.niscair.res.in/handle/123456789/44743
  8. Kumar Y., Pradhan S., Pramanik S. et al.: J. Electroanal. Chem., 2018, 830-831, 95. https://doi.org/10.1016/j.jelechem.2018.10.021
  9. Kumar Y., Singh P., Pramanik P., Das D.: J. Sci. Ind. Res., 2019, 78, 177. http://nopr.niscair.res.in/handle/123456789/45941
  10. Kumar Y., Pramanik P., Das D.: Heliyon, 2019, 5, e02031. https://doi.org/10.1016/j.heliyon.2019.e02031
  11. Sihombing K., Tamba M., Marbun W., Situmorang M.: Indian J. Chem. A, 2018, 57, 175. http://nopr.niscair.res.in/handle/123456789/43627
  12. Cullity B., Stock S.: Elements of X-ray Diffraction. Addison-Wesley, Boston 2001.
  13. Zhang X., Duan S., Xu X. et al.: Electrochim. Acta, 2011, 56, 1981. https://doi.org/10.1016/j.electacta.2010.11.048
  14. Sun W., Liu J., Ju X. et al.: Ionics, 2013, 19, 657. https://doi.org/10.1007/s11581-012-0789-6
  15. Rezaei B., Khosropour H., Ensafi A. et al.: RSC Adv., 2015, 5, 75756. https://doi.org/10.1039/C5RA15845A
  16. Yari A., Saidikhah M.: J. Electroanal. Chem., 2016, 783, 288. https://doi.org/10.1016/j.jelechem.2016.10.063
  17. Hui Y., Ma X., Hou X. et al.: Ionics, 2015, 21, 1751. https://doi.org/10.1007/s11581-014-1343-5
  18. Jesny S., Menon S., Girish Kumar K.: RSC Adv., 2016, 6, 75741. https://doi.org/10.1039/C6RA13567F
  19. Liu X., Zhang L., Wein S. et al.: Biosens. Bioelectron., 2014, 57, 232. https://doi.org/10.1016/j.bios.2014.02.017
  20. da Cruz F., Paula F., Franco D. et al.: J. Electroanal. Chem., 2017, 806, 172. https://doi.org/10.1016/j.jelechem.2017.10.070
  21. Beitollahi H., GarkaniNejad F., Shakeri S.: Anal. Methods, 2017, 9, 5541. https://doi.org/10.1039/C7AY01226H