Telechelic Oligo(N-Vinylpyrolydone)swith Cumene Based Terminal Groups for Block-Copolymer and Nanoparticle Obtaining

2022;
: pp. 34–41
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Lviv Polytechnic National University, Ukraine
6
Lviv Polytechnic National University
7
Lviv Polytechnic National University
8
Lviv Polytechnic National University

Polymers with terminal epoxy, phosphate, fluoroalkyl groups were obtained by radical polymerization in the presence of chain transfer agents derived from isopropylbenzene. The structure of polymers was confirmed by NMR spectra and functional analysis. Polymers with functional fragment were used for synthesis of polymer-inorganic particles and copolymers with poly(2-ethyl-2-oxazoline) fragment.

  1. Bernaerts, K.V.; Du Prez, F.E. Dual/Heterofunctional Initiators for the Combination of Mechanistically Distinct Polymerization Techniques. Prog. Polym. Sci. 2006, 31, 671-722. https://doi.org/10.1016/j.progpolymsci.2006.08.007
  2. Handbook of Vinyl Polymers: Radical Polymerization, Process, and Technology, 2nd edn.; Mishra, M.; Yagci, Y., Eds.; CRC Press: Boca Raton, 2016. https://doi.org/10.1201/9781420015133
  3. Lowe, A.B.; McCormick, C.L. Reversible Addition-Fragmentation Chain Transfer (RAFT) Radical Polymerization and the Synthesis of Water-Soluble (Co) Polymers Under Homogeneous Conditions in Organic and Aqueous Media. Prog. Polym. Sci. 2007, 32, 283-351. https://doi.org/10.1016/j.progpolymsci.2006.11.003
  4. Corrigan, N.; Jung, K.; Moad, G.; Hawker, C.J.; Matyjaszewski, K.; Boyer, C. Reversible-Deactivation Radical Polymerization (Controlled/Living Radical Polymerization): From Discovery to Materials Design and Applications. Prog. Polym. Sci. 2020, 111, 101311. https://doi.org/10.1016/j.progpolymsci.2020.101311
  5. Kuskov A.N.; Kulikov, P.P.; Goryachaya, A.V.; Tzatzarakis, M.N.; Docea, A.O.; Velonia, K.; Shtilman, M.I.; Tsatsakis, A.M. Amphiphilic Poly-N-Vinylpyrrolidone Nanoparticles as Carriers for Non-Steroidal, Anti-Inflammatory Drugs: In vitro Cytotoxicity and in vivo Acutetoxicity Study. Nanomedicine 2017, 13, 1021-1030. https://doi.org/10.1016/j.nano.2016.11.006
  6. Strijkstra A.; Trautwein, K.; Jarling, R.; Wöhlbrand, L.; Dörries, M.; Reinhardt, R.; Drozdowska, M.; Golding, B.T.; Wilkes, H.; Rabus, R. Anaerobic Activation of p-Cymene in Denitrifying Betaproteo Bacteria: Methyl Group Hydroxylation Versus Addition to Fumarate. Appl. Environ. Microbiol. 2014, 80, 7592. https://doi.org/10.1128/AEM.02385-14
  7. Wang B.; Ge, L.; Mo, J.; Su, L.; Li, Y.; Yang, K. Essential Oils and Ethanol Extract from Camellia Nitidissima and Evaluation of Their Biological Activity. Adv. J. Food Sci. Technol. 2018, 55, 5075-5081. https://doi.org/10.1007/s13197-018-3446-x
  8. Brzozowski, Z.K.; Szymańska, E.; Bratychak, M.M. New Epoxy-Unsaturated Polyester Resin Copolymers. React. Funct. Polym. 1997, 33, 217-224. https://doi.org/10.1016/S1381-5148
  9. Iatsyshyn, O.; Astakhova, O.; Shyshchak, O.; Lazorko, O.; Bratychak, M. Monomethacrylate Derivative of ED-24 Epoxy Resin and its Application. Chem. Chem. Technol. 2013, 7, 73-77. https://doi.org/10.23939/chcht07.01.073
  10. Ivashkiv, O.; Astakhova, O.; Shyshchak, O.; Plonska-Brzezinska, M.; Bratychak, M. Structure and Application of ED-20 Epoxy Resin Hydroxy-Containing Derivatives in Bitumen-Polymeric Blends. Chem. Chem. Technol. 2015, 9, 69-76. https://doi.org/10.23939/chcht09.01.069
  11. Strap, G.; Astakhova, O.; Lazorko, O.; Shyshchak, O.; Bratychak, M. Modified Phenol-Formaldehyde Resins and Their Application in Bitumen-Polymeric Mixtures. Chem. Chem. Technol. 2013, 7, 279-287. https://doi.org/10.23939/chcht07.03.279
  12. Ivashkiv, O.; Namiesnik, J.; Astakhova, O.; Shyshchak, O.; Bratychak, M. A Synthesis and Application of Oligomer with Hydroxy Groups Based on Peroxy Derivative of ED-24 Epoxy Resin and PolyTHF-2000 Oligoether. Chem. Chem. Technol. 2015, 9, 313-318. https://doi.org/10.23939/chcht09.03.313
  13. Paiuk, O.L.; Mitina, N.Ye.; Myagkota, O.S.; Volianiuk, K.A.; Musat, N.; Stryganyuk, G.Z.; Reshetnyak, O.V.; Kinash, N.I.; Hevus O.I.; Shermolovich, Yu.G. et al. Fluorine-Containing Polyamphiphiles of Block Structure Constructed of Synthetic and Biopolymer Blocks. Вiopolym. Cell, 2018, 34, 207-217. https://doi.org/10.7124/bc.00097B
  14. Miagkota, O.; Mitina, N.; Nadashkevych, Z.; Yanchuk, I.; Greschuk, O.; Hevus, O.; Zaichenko, A. Novel Peroxide Containing Pegylated Polyampholytic Block Copolymers. Chem. Chem. Technol. 2014, 8, 61-66. https://doi.org/10.23939/chcht08.01.061
  15. Demchuk, Z.; Savka, M.; Voronov, A.; Budishevska, O.; Donchak, V.; Voronov, S. Amphiphilic Cholesterol Containing Polymers for Drug Delivery Systems. Chem. Chem. Technol. 2016, 10, 561-570. https://doi.org/10.23939/chcht10.04si.561
  16. Volianiuk, K.A.; Paiuk, O.L.; Mitina, N.Ye.; Zaichenko, A.S.; Kinash, N.I. Luminescent Oligonucleotide Containing Block-Copolymers as Markers of Bacteria and Cells Based on Telechelatic Poly(N-Vinylpyrrolidone) with the Terminal Epoxy and Fluoroalkyl Fragment. Chem., Technol. Appl. Subst. 2019, 2, 166-172. https://doi.org/10.23939/ctas2019.01.166
  17. Braun, D.; Cherdron, H.; Rehahn, M.; Ritter, H.; Voit, B. Polymer Synthesis: Theory and Practice: Fundamentals, Methods, Experiments; Springer: Berlin, Heidelberg, 2013. https://doi.org/10.1007/978-3-642-28980-4
  18. Bahdasarian, Ch.S. Teoriia Radykalnoi Polimerizacii. Nauka: Moskwa, 1966.
  19. Toropceva, A.M. Laboratornyi Praktykum po Khimii i Technologii Vysokomolekuliarnykh Soedinenii, Khimia: Moskwa, 1972.
  20. Botan, R.; de Bona Sartor, S. X-Ray Diffraction Analysis of Layered Double Hydroxide Polymer Nanocomposites. In Layered Double Hydroxide Polymer Nanocomposites; Sabu, T., Saju, D., Eds., Woodhead Publishing, 2019; pp 205-229. https://doi.org/10.1016/B978-0-08-101903-0.00005-2
  21. Zaichenko, A.S.; Mitina, N.; Shevchuk, O.; Rayevska, K.; Lobaz, V.; Skorokhoda, T.; Stoika, R. Development of Novellinear, Block, and Branched Oligoelectrolytes and Functionally Targeting Nanoparticles. Pure Appl. Chem. 2008, 80, 2309-2326. https://doi.org/10.1351/pac200880112309
  22. Odian, G. Principles of Polymerization, 4th edn.; John Wiley&Sons: New York, 2004. https://doi.org/10.1002/047147875X
  23. Lombardo, D.; Kiselev, M.A.; Magazù, S.; Calandra, P. Amphiphiles Self-Assembly: Basic Concepts and Future Perspectives of Supramolecular Approaches. Adv. Condens. Matter Phys. 2015, 2015, Article ID 151683. https://doi.org/10.1155/2015/151683