Hydrogels Based on Natural Polymers for Cardiac Applications

2022;
: pp. 564 - 572
1
Department of Polymer Technology, Faculty of Chemistry, Gdansk University of Technology
2
Department of Polymer Technology, Faculty of Chemistry, Gdansk University of Technology
3
Department of Polymer Technology, Faculty of Chemistry, Gdansk University of Technology
4
Department of Polymer Technology, Faculty of Chemistry, Gdansk University of Technology
5
Gdansk University of Technology
6
Department of Polymer Technology, Gdansk University of Technology

In this work agar- and borax-based hydrogels with and without the addition of poly(vinyl alcohol) (PVA) at different concentrations were synthesized. Hydrogels were modified by the same amount of acetylsalicylic acid (ASA) which exhibits antithrombotic properties. The effect of modification by ASA on the properties of hydrogels was analyzed.

[1] Cui, Z.; Yang, B.; Li, R.-K. Application of Biomaterials in Cardiac Repair and Regeneration. Engineering 2016, 2(1), 141-148. https://doi.org/10.1016/J.ENG.2016.01.028
[2] Piesowicz, E.; Irska, I.; Bryll, K.; Gawdzinska, K.; Bratychak, M. Poly(Butylene Terephthalate/Carbon Nanotubes Nanocomposites. Part II. Structure and Properties. Polimery 2016, 61(1), 24-30. https://doi.org/10.14314/polimery.2016.024
[3] Li, Y.; Rodrigues, J.; Tomás, H. Injectable and Biodegradable Hydrogels: Gelation, Biodegradation and Biomedical Applications. Chem. Soc. Rev. 2012, 41(6), 2193-2221. https://doi.org/10.1039/C1CS15203C
[4] Lam, M.T.; Wu, J.C. Biomaterial Applications in Cardiovascular Tissue Repair and Regeneration. Expert Rev. Cardiovasc. Ther. 2012, 10(8), 1039-1049. https://doi.org/10.1586/erc.12.99
[5] Gibas, I.; Janik, H. Review: Synthetic Polymer Hydrogels for Biomedical Applications. Chem. Chem. Technol. 2010, 4(4), 297-304. https://doi.org/10.23939/chcht04.04.297
[6] Chyzy, A.; Pawelski, D.; Vivcharenko, V.; Przekora, A.; Bratychak, M.; Astakhova, O.; Breczko, J.; Drozdzal, P.; Plonska-Brzezinska M.E. Microwave-Assisted Synthesis of Modified Glycidyl Methacrylate–Ethyl Methacrylate Oligomers, Their Physico-Chemical and Biological Characteristics. Molecules 2022, 27, 337. https://doi.org/10.3390/molecules27020337
[7] Solomko, N.; Budishevska, O.; Voronov, S. Peroxide Chitosan Derivatives and Their Application. Chem. Chem. Technol. 2007, 1(3), 137-147. https://doi.org/10.23939/chcht01.03.137
[8] Guelcher, S.A.; Gallagher, K.M.; Didier, J.E.; Klinedinst, D.B.; Doctor, J.S.; Goldstein, A.S.; Wilkes, G.L.; Beckman, E.J.; Hollinger, J.O. Synthesis of Biocompatible Segmented Polyurethanes from Aliphatic Diisocyanates and Diurea Diol Chain Extenders. Acta Biomater. 2005, 1(4), 471-484. https://doi.org/10.1016/j.actbio.2005.02.007
[9] Zubyk, H.; Mykhailiv, O.; Papathanassiou, A. N.; Sulikowski, B.; Zambrzycka-Szelewa, E.; Bratychak, M.; Plonska-Brzezinska, M.E. A Phenol-Formaldehyde Polymeric Network to Generate Organic Aerogels: Synthesis, Physicochemical Characteristics and Potential Applications. J. Mater. Chem. A 2018, 6(3), 845-852. https://doi.org/10.1039/C7TA08814K
[10] Borowska, M.; Glinka, M.; Filipowicz, N.; Terebieniec, A.; Szarlej, P.; Kot-Wasik, A.; Kucińska-Lipka, J. Polymer Biodegradable Coatings as Active Substance Release Systems for Urological Applications. Monatsh. Chem. 2019, 150(9), 1697-1702. https://doi.org/10.1007/s00706-019-02474-8
[11] Silvetti, M.S.; Drago, F.; Rava, L. Long-Term Outcome of Transvenous Bipolar Atrial Leads Implanted in Children and Young Adults with Congenital Heart Disease. Europace 2012, 14(7), 1002-1007. https://doi.org/10.1093/europace/eus024
[12] Przybytek, A.; Gubańska, I.; Kucińska-Lipka, J.; Janik, H. Polyurethanes as a Potential Medical-Grade Filament for Use in Fused Deposition Modeling 3d Printers – A Brief Review. Fibres Text. East. Eur. 2018, 26(6), 120-125. https://doi.org/10.5604/01.3001.0012.5168
[13] Szarlej, P.; Carayon, I.; Gnatowski, P.; Glinka, M.; Mroczyńska, M.; Brillowska-Dąbrowska, A.; Kucińska-Lipka, J. Composite Polyurethane-Polylactide (PUR/PLA) Flexible Filaments for 3D Fused Filament Fabrication (FFF) of Antibacterial Wound Dressings for Skin Regeneration. Materials 2021, 14(20), 6054. https://doi.org/10.3390/ma14206054
[14] McMahan, S.; Taylor, A.; Copeland, K.M.; Pan, Z.; Liao, J.; Hong, Y. Current Advances in Biodegradable Synthetic Polymer Based Cardiac Patches. J. Biomed. Mater. Res. A 2020, 108(4), 972-983. https://doi.org/10.1002/jbm.a.36874
[15] Skorokhoda, V.; Semenyuk, N.; Melnyk, J.; Suberlyak, O. Hydrogels Penetration and Sorption Properties in the Substances Release Controlled Processes. Chem. Chem. Technol. 2009, 3(2), 117-121. https://doi.org/10.23939/chcht03.02.117
[16] Wong, R.S.H.; Ashton, M.; Dodou, K. Effect of Crosslinking Agent Concentration on the Properties of Unmedicated Hydrogels. Pharmaceutics 2015, 7(3), 305-319. https://doi.org/10.3390/pharmaceutics7030305
[17] Bukhari, S.M.H.; Khan, S.; Rehanullah, M.; Ranjha, N.M. Synthesis and Characterization of Chemically Cross-Linked Acrylic Acid/Gelatin Hydrogels: Effect of pH and Composition on Swelling and Drug Release. Int. J. Polym. Sci. 2015, 2015, 187961. https://doi.org/10.1155/2015/187961
[18] Jones, L.; May, C.; Nazar, L.; Simpson, T. In Vitro Evaluation of the Dehydration Characteristics of Silicone Hydrogel and Conventional Hydrogel Contact Lens Materials. Contact Lens Anterior Eye 2002, 25(3), 147-156. https://doi.org/10.1016/S1367-0484(02)00033-4