Effect of Modifying the Clinoptilolite-Containing Rocks of Transcarpathia on Their Porous Characteristics and Catalytic Properties in the Conversion of C6-Hydrocarbons

: pp. 373 - 385
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine

The efficiency of modifying the Ukrainian clinoptilolite-containing rocks to improve their adsorption and catalytic properties was evaluated based on the data of XRD, IR spectroscopy, low-temperature N2 adsorption, and testing in the micropulse catalytic transformation of C6-hydrocarbons. The effect of such modification on the distribution of reaction products was established.

  1. Patrylak, L.; Pertko, O. Peculiarities of Activity Renovation of Zeolite Catalysts Coked in Hexane Cracking. Chem. Chem. Technol. 2018, 12, 538-542. https://doi.org/10.23939/chcht12.04.538
  2. Barakov, R.Y.; Shcherban, N.D.; Yaremov, P.S.; Voloshyna, Y.G.; Krylova, M.M.; Tsyrina, V.V.; Ilyin, V.G. Effect of the Structure and Acidity of Micro-Mesoporous Alumosilicates on Their Catalytic Activity in Cumene Cracking. Theor. Exp. Chem. 2016, 52, 212-220. https://doi.org/10.1007/s11237-016-9470-x
  3. Liu, Z.; Hua, Y.; Wang, J.; Dong, X.; Tian, Q.; Han, Y. Recent Progress in the Direct Synthesis of Hierarchical Zeolites: Synthetic Strategies and Characterization Methods. Mater. Chem. Front. 2017, 1, 2195-2212. https://doi.org/10.1039/C7QM00168A
  4. Kurmach, M.M.; Larina, O.V.; Kyriienko, P.I.; Yaremov, P.S.; Trachevsky, V.V.; Shvets, O.V.; Soloviev, S.O. Hierarchical Zr-MTW Zeolites Doped with Copper as Catalysts of Ethanol Conversion into 1,3-Butadiene. ChemistrySelect. 2018, 3, 8539-8546. https://doi.org/10.1002/slct.201801971
  5. Bai, R.; Song, Y.; Li, Y.; Yu, J. Creating Hierarchical Pores in Zeolite Catalysts. Trends in Chemistry 2019, 1, 601-611. https://doi.org/10.1016/j.trechm.2019.05.010
  6. Khan, W.; Jia, X.; Wu, Zh.; Choi, J.; Yip, A.C.K. Incorporat-ing Hierarchy into Conventional Zeolites for Catalytic Biomass Conversions: A Review. Catalysts 2019, 9, 127-150. https://doi.org/10.3390/catal9020127
  7. Martins, G.S.V.; dos Santos, E.R.F.; Rodrigues, M.G.F.; Pecchi, G.; Yoshioka, C.M.N.; Cardoso, D. N-Hexane Isomerization on Ni-Pt/Catalysts Supported on Mordenite. Modern Research in Catalysis 2013, 2, 119-126. https://doi.org/10.4236/mrc.2013.24017
  8. Sousa, B.V.; Brito, K.D.; Alves, J.J.N.; Rodrigues, M.G.F.; Yoshioka, C.M.N.; Cardoso, D. N-Hexane Isomerization on Pt/HMOR: Effect of Platinum Content. Reac. Kinet. Mech. Cat. 2011, 102, 473-485. https://doi.org/10.1007/s11144-010-0273-0
  9. Ono, Y. A Survey of the Mechanism in Catalytic Isomeriza-tion of Alkanes. Catal. Today 2003, 81, 3-16. https://doi.org/10.1016/S0920-5861(03)00097-X
  10. Patriljak, K.I.; Bobonich, F.M.; Patriljak, L.K.; Voloshina, Yu.G.; Levchuk, N.N.; Solomaha, V.N.; Cuprik, I.N. Gidroizomerizacija N-Geksana na Palladij- i Cirkonilsoderzhashhih Modificirovannyh Mordenit-Klinoptilolitovyh Porodah. Katalìz ta naftohìmìâ 2000, 4, 10-15.
  11. Patrylak, K.I.; Bobonich, F.M.; Tsupryk, I.N.; Bobik, V.V.; Levchuk, N.N.; Solomakha, V.N. The Role of External Acid Sites of Palladium-Containing Zeolite Catalysts in Hexane Isomerization. Pet. Chem. 2003, 43, 387-394.
  12. Bobik, V.V.; Bobonich, F.M.; Belokopytov, Yu.V. Effect of External Acidity of Mordenite-Supported Catalysts on the 2,2-Dimethylbutane Content in Hydroisomerization Products of N-Hexane. Theor. Exp. Chem. 2003, 39, 364-368. https://doi.org/10.1023/B:THEC.0000013989.04033.e1
  13. Patrylak, L.K.; Pertko, O.P.; Yakovenko, A.V.; Voloshyna, Yu.G.; Povazhnyi, V.A.; Kurmach, M.M. Isomerization of Linear Hexane over Acid-Modified Nanosized Nickel-Containing Natural Ukrainian Zeolites. Appl. Nanosci. 2022, 12, 411-425. https://doi.org/10.1007/s13204-021-01682-1
  14. Voloshyna, Yu.G.; Pertko, O.P.; Povazhnyi, V.A.; Patrylak, L.K.; Yakovenko, A.V. Influence of the Development of a System of Nanoscale Pores in a Mordenite-Containing Rock on Its Selectivity for Di-Branched Products of n-Hexane Hydroisomerization. Appl. Nanosci. [Online early access]. https://doi.org/10.1007/s13204-022-02632-1 Published online: September 13, 2022. https://www.springer.com/journal/13204 (accessed Oct 15, 2022).
  15. Woo, H.C.; Lee, K.H.; Lee, J.S. Catalytic Skeletal Isomeriza-tion of N-Butenes to Isobutene over Natural Clinoptilolite Zeolite. Appl. Catal. A-Gen. 1996, 134, 147-158. https://doi.org/10.1016/0926-860X(95)00216-2
  16. Dziedzicka, A.; Sulikowski, B.; Ruggiero-Mikołajczyk, M. Catalytic and Physicochemical Properties of Modified Natural Clinoptilolite. Catal. Today 2016, 259, 50-58. https://doi.org/10.1016/j.cattod.2015.04.039
  17. Miądlicki, P.; Wróblewska, A.; Kiełbasa, K.; Koren, Z.C.; Michalkiewicz, B. Sulfuric Acid Modified Clinoptilolite as a Solid Green Catalyst for Solvent-Free α-Pinene Isomerization Process. Microporous Mesoporous Mater. 2021, 324, 111266. https://doi.org/10.1016/j.micromeso.2021.111266
  18. Retajczyk, M.; Wróblewska, A.; Szymańska, A.; Michalkie-wicz, B. Isomerization of Limonene over Natural Zeolite-Clinoptilolite. Clay Minerals 2019, 54, 121-129. https://doi.org/10.1180/clm.2019.18
  19. Khoshbin, R.; Haghighi, M.; Asgari, N. Direct Synthesis of Dimethyl Ether on the Admixed Nanocatalysts of CuO-ZnO-Al2O3 and HNO3-Modified Clinoptilolite at High Pressures: Surface Properties and Catalytic Performance. Mater. Res. Bull. 2013, 48, 767-777. https://doi.org/10.1016/j.materresbull.2012.11.057
  20. Yilmaz, S.; Ucar, S.; Artok, L.; Gulec, H. The Kinetics of Citral Hydrogenation over Pd Supported on Clinoptilolite Rich Natural Zeolite. Appl. Catal. A-Gen. 2005, 287, 261-266. https://doi.org/10.1016/j.apcata.2005.04.002
  21. Barthomeuf, D. Zeolite Acidity Dependence on Structure and Chemical Environment. Correlations with Catalysis. Mater. Chem. Phys. 1987, 17, 49-71. https://doi.org/10.1016/0254-0584(87)90048-4
  22. Tur'yan, Y.I. Theoretical Bases of the Ammonium Ion Deter-mination by Formol Titration. Rev. Anal. Chem. 2010, 29, 25-37. https://doi.org/10.1515/REVAC.2010.29.1.25
  23. Database of Zeolite Structures Home Page. http://www.iza-structure.org/databases/ (accessed 2022-10-15).
  24. Zuo, R.-F.; Du, G.-X.; Yang, W.-G.; Liao, L.-B.; Li, Z. Mineralogical and Chemical Characteristics of a Powder and Purified Quartz from Yunnan Province. Open Geosci. 2016, 8, 606-611. https://doi.org/10.1515/geo-2016-0055
  25. Pechar, F.; Rykl, D. Study of the Complex Vibrational Spectra of Natural Zeolite Mordenites. Zeolites 1983, 3, 329-332. https://doi.org/10.1016/0144-2449(83)90177-X
  26. Jansen, J.C.; van der Gaag, F.J.; van Bekkum, H. Identifica-tion of ZSM-type and Other 5-Ring Containing Zeolites by I.R. Spectroscopy. Zeolites 1984, 4, 369-372. https://doi.org/10.1016/0144-2449(84)90013-7
  27. Patrylak, L.K.; Voloshyna, Yu.G.; Pertko, O.P.; Yakovenko, A.V.; Povazhnyi, V.A.; Melnychuk, O.V. Investigation of the Features of Nickel-Modified Mordenite Zeolites. Water&Water Purification Technologies. Scientific and Technical News 2021, 30, 59-66. https://doi.org/10.20535/2218-930022021241332
  28. Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, With Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051-1069. https://doi.org/10.1515/pac-2014-1117
  29. Hernández, M.; Rojas, F.; Lara, V. Nitrogen-Sorption Characterization of the Microporous Structure of Clinoptilolite-Type Zeolites. J. Porous Mater. 2000, 7, 443-454. https://doi.org/10.1023/A:1009662408173
  30. Monteiro, R.; Ani, C.O.; Rocha, J.; Carvalho, A.P.; Martins, A. Catalytic Behavior of Alkali-Treated Pt/HMOR in N-Hexane Hydroisomerization. Appl. Catal. A-Gen. 2014, 476, 148-157. https://doi.org/10.1016/j.apcata.2014.02.026
  31. Gobin, O.C.; Reitmeier, S.J.; Jentys, A.; Lercher, J.A. Role of the Surface Modification on the Transport of Hexane Isomers in ZSM-5. J. Phys. Chem. C 2011, 115, 1171−1179. https://doi.org/10.1021/jp106474x
  32. Barthomeuf, D. Topology and Maximum Content of Isolated Species (Al, Ga, Fe, B, Si, ...) in a Zeolitic Framework. An Ap-proach to Acid Catalysis. J. Phys. Chem. 1993, 97, 10092−10096. https://doi.org/10.1021/j100141a032