Investigation of Hybrid Organic-Inorganic Dihydrogen Phosphate by Hirshfeld Surface Analysis and Quantum Chemical Analysis

2023;
: pp. 244 - 252
1
Laboratory of Materials, Electrochemistry and Environment Faculty of Sciences, Chemistry Department, Ibn Tofail University
2
Laboratory of Materials Chemistry and Biotechnology of Natural Products, Moulay Ismail University
3
Laboratory of Materials, Electrochemistry and Environment Faculty of Sciences, Chemistry Department, Ibn Tofail University

This present work undertakes the study of organic-inorganic hybrid material, which has been obtained successfully by an acid-base reaction at room tem-perature and structurally studied by the single crystal X-ray diffraction method. N-(Dicyclopropylmethylamino)-4,5-dihydro-1,3-oxazolium dihydrogenphosphate [10-CN@DP] crystallizes in the triclinic system with the space group P-1. The X-ray structural analysis supported by a Hirshfeld surface analysis of the crystal structure indicates that the most significant contributions to the crystal packing are from H…H (63.3%), H…O/O…H (32.2%) and H…C/C…H (2.5%) contacts. Density functional theory geometry-optimized calculations were compared to the experimentally determined structure. Using the same level of theory to imagine the chemical reactivity and charge distribution on the molecule, used to determine the HOMO-LUMO energy gap and density of state (DOS) range, the molecular electrostatic potential (MEP) image was drawn. Keywords: HOMO–LUMO, density of state, Hirshfeld surface analysis, electrostatic potential surface.

  1. Guloy, A.M.; Tang, Z.J.; Miranda, P.B.; Srdanov, V.I. A New Luminescent Organic-Inorganic Hybrid Compound with Large Optical Nonlinearity. Adv. Mater. 2001, 13, 833-837. https://doi.org/10.1002/1521-4095(200106)13:11%3C833::AID-ADMA833%3E3.0.CO;2-T
  2. Chang, H.-Y.; Kim, S.-H.; Halasyamani, P.S.; Ok, K.M. Align-ment of Lone Pairs in a New Polar Material: Synthesis, Characteri-zation, and Functional Properties of Li2Ti(IO3)6. J. Am. Chem. Soc. 2009, 131, 2426-2427. https://doi.org/10.1021/ja808469a
  3. Chang, H.-Y.; Kim, S.-H.; Ok, K.M.; Halasyamani, P.S. New Polar Oxides: Synthesis, Characterization, Calculations, and Struc-ture−Property Relationships in RbSe2V3O12 and TlSe2V3O12. Chem. Mater. 2009, 21, 1654-1662. https://doi.org/10.1021/cm9002614
  4. Abu El-Fadl, A.; Gaffar, M.A.; Omar, M.H. Electrical Conduc-tivity and Pyroelectricity of Lithium-Potassium Sulphate Single Crystal in the Temperature Range 300-950 K. Physica B Condens. Matter 1999, 269, 395-402. https://doi.org/10.1016/S0921-4526(99)00116-7
  5. Horiuchi, S.; Tokunaga, Y.; Giovannetti, G.; Picozzi, S.; Itoh, H.; Shimano, R.; Kumai, R.; Tokura, Y. Above-room-temperature Ferroelectricity in a Single-Component Molecular Crystal. Nature 2010, 463,789-792. https://doi.org/10.1038/nature08731
  6. Mishurov, D.; Voronkin, A.; Roshal, A.; Bogatyrenko, S.; Vashchenko, O. Synthesis and Characterization of Dye-Doped Polymer Films for Non-linear Optical Applications. Chem. Chem. Technol. 2019, 13, 459-464. https://doi.org/10.23939/chcht13.04.459
  7. Hearn, R.A.; Bugg, C.E. The crystal Structure of (-)-Ephedrine Dihydrogen Phosphate. Acta. Crystallogr. B. Struct. Sci. Cryst. Eng. Mater. 1972, B28, 3662-3667. https://doi.org/10.1107/S0567740872008532
  8. Adams, J.M. The Crystal Structure of Aminoguanidinium Dihydrogen Orthophosphate. Acta. Crystallogr. B. Struct. Sci. Cryst. Eng. Mater. 1977, B33, 1513-1515. https://doi.org/10.1107/S0567740877006402
  9. Rafik, A.; Zouihri, H.; Guedira, T. Analysis of H-Bonding Interactions with Hirshfeld Surfaces and Geometry-Optimized Structure of the DL-Valinium Dihydrogen Phosphate. J. Chem. Technol. Metall. 2021, 56, 275-282.
  10. Blessing, R.H. Hydrogen Bonding and Thermal Vibrations in Crystalline Phosphate Salts of Histidine and Imidazole. Acta. Crys-tallogr. B. Struct. Sci. Cryst. Eng. Mater. 1986, B42, 613-621. https://doi.org/10.1107/S0108768186097641
  11. Wolff, S.K.; Grimwood, D.J.; McKinnon, J.J.; Turner, M.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer 3.0; University of Western Australia, Perth, 2012.
  12. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H. et al. Gaussian; Inc., Wallingford CT, 2016.
  13. Dennington, R. II; Keith, T.; Millam, J. GaussView, Version 4.1. 2, Semichem Inc Shawnee Mission KS, 2007.
  14. Guelmami, L.; Gharbi, A.; Jouini, A. 4-Dimethylaminopyridinium dihydrogenmonophosphate (C7H11N2)H2PO4: Synthesis, Structural, 31P, 13C NMR and Thermal Investigations. J. Chem. Crystallogr. 2012, 42, 549-554. https://doi.org/10.1007/s10870-012-0277-x
  15. Marchewka, M. K.; Drozd, M.; Janczak, Ja. Crystal and Mole-cular Structure of n-(4-Nitrophenyl)-β-alanine-Its Vibrational Spectra and Theoretical Calculations. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 79, 758-766. https://doi.org/10.1016/j.saa.2010.08.050
  16. Breda, S.; Reva, I.D.; Lapinski, L.; Nowak, M.J.; Fausto, R. Infrared Spectra of Pyrazine, Pyrimidine and Pyridazine in Solid Argon. J. Mol. Struct. 2006, 786, 193-206. https://doi.org/10.1016/j.molstruc.2005.09.010
  17. Turner, M.J.; McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Visualisation and Characterisation of Voids in Crystalline Materials. CrystEngComm 2011, 13, 1804-1813. https://doi.org/10.1039/C0CE00683A
  18. Santhy, K.R.; Sweetlin, M.D.; Muthu, S.; Kuruvilla, T.K.; Abraham, C.S. Structure, Spectroscopic study and DFT Calculations of 2,6 bis (tri fluro methyl) benzoic acid. J. Mol. Struct. 2019, 1177, 401-417. https://doi.org/10.1016/j.molstruc.2018.09.058
  19. Chethan Prathap, K.N.; Lokanath, N.K. Three Novel Couma-rin-Benzenesulfonylhydrazide Hybrids: Synthesis, Characterization, Crystal Structure, Hirshfeld Surface, DFT and NBO Studies. J. Mol. Struct. 2018, 1171, 564-577. https://doi.org/10.1016/j.molstruc.2018.06.022
  20. Mulliken, R.S. Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I. J. Chem. Phys. 1955, 23, 1833. https://doi.org/10.1063/1.1740588
  21. Nataraj, A.; Balachandran, V.; Karthick, T. Molecular Orbital Studies (Hardness, Chemical Potential, Electrophilicity, and First Electron Excitation), Vibrational Investigation and Theoretical NBO Analysis of 2-Hydroxy-5-bromobenzaldehyde by Density Functional Method. J. Mol. Struct. 2013, 1031, 221-233. https://doi.org/10.1016/j.molstruc.2012.09.047
  22. Onitsch, E.M. Uber die Mikroharte der Metalle. Mikroskopie 1947, 2, 131.
  23. Premkumar, S.; Jawahar, A.; Mathavan, T.; Kumara Dhas, M.; Sathe, V.G.; Benial, A.M.F. DFT Calculation and Vibrational Spectroscopic Studies of 2-(Tert-butoxycarbonyl (Boc) -amino)-5-bromopyridine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 129, 74-83. https://doi.org/10.1016/j.saa.2014.02.147
  24. Mathammal, R.; Sudha, N.; Prasad, L.G.; Ganga, N.; Krishna-kumar, V. Spectroscopic (FTIR, FT-Raman, UV and NMR) investigation and NLO, HOMO-LUMO, NBO analysis of 2-Benzylpyridine based on quantum chemical calculations. Spectro-chim. Acta A Mol. Biomol. Spectrosc. 2015, 137, 740-748. https://doi.org/10.1016/j.saa.2014.08.099
  25. Uzun, S.; Esen, Z.; Koç, E.; Usta, N.C.; Ceylan, M. Experimental and Density Functional Theory (MEP, FMO, NLO, Fukui Functions) and Antibacterial Activity Studies on 2-Amino-4- (4-nitrophenyl) -5,6-dihydrobenzo [h] quinoline-3-carbonitrile. J. Mol. Struct. 2019, 1178, 450-457. http://dx.doi.org/10.1016/j.molstruc.2018.10.001
  26. Attar, T.; Messaoudi, B.; Benhadria, N. DFT Theoretical Study of Some Thiosemicarbazide Derivatives with Copper. Chem. Chem. Technol. 2020, 14, 20-25. https://doi.org/10.23939/chcht14.01.020
  27. Kaya, S.; Tüzün, B.; Kaya, C.; Obot, I.B. Determination of Corrosion Inhibition Effects of Amino Acids: Quantum Chemical and Molecular Dynamic Simulation Study. J. Taiwan Inst. Chem. Eng. 2016, 58, 528-535. https://doi.org/10.1016/j.jtice.2015.06.009
  28. Lanez, E.; Bechki, L.; Lanez, T. Ferrocenylmethylnucleobases: Synthesis, DFT Calculations, Electrochemical and Spectroscopic Characterization. Chem. Chem. Technol. 2020, 14, 146-153. https://doi.org/10.23939/chcht14.02.146
  29. Parr, R.G.; Szentpaly, L.V.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922-1924. https://doi.org/10.1021/ja983494x
  30. Pandey, M.; Muthu, S.; Nanje Gowda, N.M. Quantum Mechanical and Spectroscopic (FT-IR, FT-Raman, 1H, 13C NMR, UV-Vis) Studies, NBO, NLO, HOMO, LUMO and Fukui Function Analysis of 5-Methoxy-1H-benzo[d]imidazole-2(3H)-thione by DFT Studies. J. Mol. Struct. 2017, 1130, 511-521. https://doi.org/10.1016/j.molstruc.2016.10.064
  31. Gumus, S.; Sundius, T.; Yilmaz, V. Vibrational Analyses of 1,3-Dibenzoyl-4,5-dihydro-1H-imidazole-2-thione and 1,3-Dibenzoyl tetrahydropyrimidine-2(1H)-thione by Normal Coordi-nate Treatment. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 98, 384-395. https://doi.org/10.1016/j.saa.2012.08.058