Дослідження гібридного органічно-неорганічного дигідрофосфату за допомогою поверхневого аналізу за хіршфельдом та квантово-хімічного аналізу

2023;
: cc. 244 - 252
1
Laboratory of Materials, Electrochemistry and Environment Faculty of Sciences, Chemistry Department, Ibn Tofail University
2
Laboratory of Materials Chemistry and Biotechnology of Natural Products, Moulay Ismail University
3
Laboratory of Materials, Electrochemistry and Environment Faculty of Sciences, Chemistry Department, Ibn Tofail University

Ця робота присвячена вивченню органічно-неорганічного гібридного матеріалу, який був успішно отриманий кислотно-основною реакцією за кімнатної температури та структурно вивчений методом рентгенівської дифракції монокристалів. N-(Дициклопропілметиламіно)-4,5-дигідро-1,3-оксазолію дигідрофосфат [10-CN@DP] кристалізується в триклінній системі з просторовою групою P-1. Рентгено-структурний аналіз, підтверджений поверхневим аналізом кристалічної структури Хіршфельда, показує, що найбільший внесок у кристалічне упакування вносять H…H (63,3%), H…O/O…H (32,2%) і H… C/C…H (2,5%) контакти. Розрахунки з використанням теорії функціоналу густини, оптимізовані за геометрією, порівняно з експериментально визначеною структурою. Використовуючи той самий рівень теорії, було намальовано зображення молекулярного електростатичного потенціалу (MEP) з метою уявити хімічну реакційну здатність і розподіл заряду на молекулі, що використовується для визначення діапазону енергетичної щілини ВЗМО-НВМО та густини стану (DOS).

  1. Guloy, A.M.; Tang, Z.J.; Miranda, P.B.; Srdanov, V.I. A New Luminescent Organic-Inorganic Hybrid Compound with Large Optical Nonlinearity. Adv. Mater. 2001, 13, 833-837. https://doi.org/10.1002/1521-4095(200106)13:11%3C833::AID-ADMA833%3E3.0.CO;2-T
  2. Chang, H.-Y.; Kim, S.-H.; Halasyamani, P.S.; Ok, K.M. Align-ment of Lone Pairs in a New Polar Material: Synthesis, Characteri-zation, and Functional Properties of Li2Ti(IO3)6. J. Am. Chem. Soc. 2009, 131, 2426-2427. https://doi.org/10.1021/ja808469a
  3. Chang, H.-Y.; Kim, S.-H.; Ok, K.M.; Halasyamani, P.S. New Polar Oxides: Synthesis, Characterization, Calculations, and Struc-ture−Property Relationships in RbSe2V3O12 and TlSe2V3O12. Chem. Mater. 2009, 21, 1654-1662. https://doi.org/10.1021/cm9002614
  4. Abu El-Fadl, A.; Gaffar, M.A.; Omar, M.H. Electrical Conduc-tivity and Pyroelectricity of Lithium-Potassium Sulphate Single Crystal in the Temperature Range 300-950 K. Physica B Condens. Matter 1999, 269, 395-402. https://doi.org/10.1016/S0921-4526(99)00116-7
  5. Horiuchi, S.; Tokunaga, Y.; Giovannetti, G.; Picozzi, S.; Itoh, H.; Shimano, R.; Kumai, R.; Tokura, Y. Above-room-temperature Ferroelectricity in a Single-Component Molecular Crystal. Nature 2010, 463,789-792. https://doi.org/10.1038/nature08731
  6. Mishurov, D.; Voronkin, A.; Roshal, A.; Bogatyrenko, S.; Vashchenko, O. Synthesis and Characterization of Dye-Doped Polymer Films for Non-linear Optical Applications. Chem. Chem. Technol. 2019, 13, 459-464. https://doi.org/10.23939/chcht13.04.459
  7. Hearn, R.A.; Bugg, C.E. The crystal Structure of (-)-Ephedrine Dihydrogen Phosphate. Acta. Crystallogr. B. Struct. Sci. Cryst. Eng. Mater. 1972, B28, 3662-3667. https://doi.org/10.1107/S0567740872008532
  8. Adams, J.M. The Crystal Structure of Aminoguanidinium Dihydrogen Orthophosphate. Acta. Crystallogr. B. Struct. Sci. Cryst. Eng. Mater. 1977, B33, 1513-1515. https://doi.org/10.1107/S0567740877006402
  9. Rafik, A.; Zouihri, H.; Guedira, T. Analysis of H-Bonding Interactions with Hirshfeld Surfaces and Geometry-Optimized Structure of the DL-Valinium Dihydrogen Phosphate. J. Chem. Technol. Metall. 2021, 56, 275-282.
  10. Blessing, R.H. Hydrogen Bonding and Thermal Vibrations in Crystalline Phosphate Salts of Histidine and Imidazole. Acta. Crys-tallogr. B. Struct. Sci. Cryst. Eng. Mater. 1986, B42, 613-621. https://doi.org/10.1107/S0108768186097641
  11. Wolff, S.K.; Grimwood, D.J.; McKinnon, J.J.; Turner, M.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer 3.0; University of Western Australia, Perth, 2012.
  12. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H. et al. Gaussian; Inc., Wallingford CT, 2016.
  13. Dennington, R. II; Keith, T.; Millam, J. GaussView, Version 4.1. 2, Semichem Inc Shawnee Mission KS, 2007.
  14. Guelmami, L.; Gharbi, A.; Jouini, A. 4-Dimethylaminopyridinium dihydrogenmonophosphate (C7H11N2)H2PO4: Synthesis, Structural, 31P, 13C NMR and Thermal Investigations. J. Chem. Crystallogr. 2012, 42, 549-554. https://doi.org/10.1007/s10870-012-0277-x
  15. Marchewka, M. K.; Drozd, M.; Janczak, Ja. Crystal and Mole-cular Structure of n-(4-Nitrophenyl)-β-alanine-Its Vibrational Spectra and Theoretical Calculations. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 79, 758-766. https://doi.org/10.1016/j.saa.2010.08.050
  16. Breda, S.; Reva, I.D.; Lapinski, L.; Nowak, M.J.; Fausto, R. Infrared Spectra of Pyrazine, Pyrimidine and Pyridazine in Solid Argon. J. Mol. Struct. 2006, 786, 193-206. https://doi.org/10.1016/j.molstruc.2005.09.010
  17. Turner, M.J.; McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Visualisation and Characterisation of Voids in Crystalline Materials. CrystEngComm 2011, 13, 1804-1813. https://doi.org/10.1039/C0CE00683A
  18. Santhy, K.R.; Sweetlin, M.D.; Muthu, S.; Kuruvilla, T.K.; Abraham, C.S. Structure, Spectroscopic study and DFT Calculations of 2,6 bis (tri fluro methyl) benzoic acid. J. Mol. Struct. 2019, 1177, 401-417. https://doi.org/10.1016/j.molstruc.2018.09.058
  19. Chethan Prathap, K.N.; Lokanath, N.K. Three Novel Couma-rin-Benzenesulfonylhydrazide Hybrids: Synthesis, Characterization, Crystal Structure, Hirshfeld Surface, DFT and NBO Studies. J. Mol. Struct. 2018, 1171, 564-577. https://doi.org/10.1016/j.molstruc.2018.06.022
  20. Mulliken, R.S. Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I. J. Chem. Phys. 1955, 23, 1833. https://doi.org/10.1063/1.1740588
  21. Nataraj, A.; Balachandran, V.; Karthick, T. Molecular Orbital Studies (Hardness, Chemical Potential, Electrophilicity, and First Electron Excitation), Vibrational Investigation and Theoretical NBO Analysis of 2-Hydroxy-5-bromobenzaldehyde by Density Functional Method. J. Mol. Struct. 2013, 1031, 221-233. https://doi.org/10.1016/j.molstruc.2012.09.047
  22. Onitsch, E.M. Uber die Mikroharte der Metalle. Mikroskopie 1947, 2, 131.
  23. Premkumar, S.; Jawahar, A.; Mathavan, T.; Kumara Dhas, M.; Sathe, V.G.; Benial, A.M.F. DFT Calculation and Vibrational Spectroscopic Studies of 2-(Tert-butoxycarbonyl (Boc) -amino)-5-bromopyridine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 129, 74-83. https://doi.org/10.1016/j.saa.2014.02.147
  24. Mathammal, R.; Sudha, N.; Prasad, L.G.; Ganga, N.; Krishna-kumar, V. Spectroscopic (FTIR, FT-Raman, UV and NMR) investigation and NLO, HOMO-LUMO, NBO analysis of 2-Benzylpyridine based on quantum chemical calculations. Spectro-chim. Acta A Mol. Biomol. Spectrosc. 2015, 137, 740-748. https://doi.org/10.1016/j.saa.2014.08.099
  25. Uzun, S.; Esen, Z.; Koç, E.; Usta, N.C.; Ceylan, M. Experimental and Density Functional Theory (MEP, FMO, NLO, Fukui Functions) and Antibacterial Activity Studies on 2-Amino-4- (4-nitrophenyl) -5,6-dihydrobenzo [h] quinoline-3-carbonitrile. J. Mol. Struct. 2019, 1178, 450-457. http://dx.doi.org/10.1016/j.molstruc.2018.10.001
  26. Attar, T.; Messaoudi, B.; Benhadria, N. DFT Theoretical Study of Some Thiosemicarbazide Derivatives with Copper. Chem. Chem. Technol. 2020, 14, 20-25. https://doi.org/10.23939/chcht14.01.020
  27. Kaya, S.; Tüzün, B.; Kaya, C.; Obot, I.B. Determination of Corrosion Inhibition Effects of Amino Acids: Quantum Chemical and Molecular Dynamic Simulation Study. J. Taiwan Inst. Chem. Eng. 2016, 58, 528-535. https://doi.org/10.1016/j.jtice.2015.06.009
  28. Lanez, E.; Bechki, L.; Lanez, T. Ferrocenylmethylnucleobases: Synthesis, DFT Calculations, Electrochemical and Spectroscopic Characterization. Chem. Chem. Technol. 2020, 14, 146-153. https://doi.org/10.23939/chcht14.02.146
  29. Parr, R.G.; Szentpaly, L.V.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922-1924. https://doi.org/10.1021/ja983494x
  30. Pandey, M.; Muthu, S.; Nanje Gowda, N.M. Quantum Mechanical and Spectroscopic (FT-IR, FT-Raman, 1H, 13C NMR, UV-Vis) Studies, NBO, NLO, HOMO, LUMO and Fukui Function Analysis of 5-Methoxy-1H-benzo[d]imidazole-2(3H)-thione by DFT Studies. J. Mol. Struct. 2017, 1130, 511-521. https://doi.org/10.1016/j.molstruc.2016.10.064
  31. Gumus, S.; Sundius, T.; Yilmaz, V. Vibrational Analyses of 1,3-Dibenzoyl-4,5-dihydro-1H-imidazole-2-thione and 1,3-Dibenzoyl tetrahydropyrimidine-2(1H)-thione by Normal Coordi-nate Treatment. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 98, 384-395. https://doi.org/10.1016/j.saa.2012.08.058