Crystal Smectic G Phase Retarder for the Real-Time Spatial-Temporal Modulation of Optical Information

2023;
: pp. 758 - 765
1
Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University
2
Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University
3
Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University
4
Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University
5
Iv. Javakhishvili Tbilisi State University, 2 Institute of Macromolecular Chemistry and Polymeric Materials, Iv. Javakhishvili Tbilisi State University
6
Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University
7
Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University
8
Ivane Javakhishvili Tbilisi State University R.Agladze Institute of Inorganic Chemistry and Electrochemistr

We have manufactured and investigated a novel phase retarder based on a rare and less studied liquid crystal phase, such as the Crystal Smectic G-phase prepared by mixing two certified nematic mixtures. The phase retarder is transparent in the visible and near-infrared parts of the optical spectrum. The temperature stability over a wide temperature range, high birefringence, and high strength, allow the production of various types of phase retarders that can be used in optics, optical chemical analysis,and polarimetry.

  1. Vargas, J.; Uribe-Patarroyo, N.; Quiroga, J.A.; Alvarez-Herrero, A.; Belenguer T. Optical inspection of liquid Crystal Variable Retarder Inhomogeneities. Appl. Opt. 2010, 49, 568–574.http://dx.doi.org/10.1364/AO.49.000568
  2. Kemp, J.C.; Piezo-Optical Birefringence Modulators: New Use for a Long-Known Effect. J. Opt. Soc. Am. 1969, 59, 950–953.https://doi.org/10.1364/JOSA.59.000950
  3. Saleh, B.E.A.;Teich,M.C.Fundamentals of Photonics. 2nd Edition;Wiley-Interscience, 2007. ISBN-10: 0471358320.
  4. Cao, W.; Yang, X.;Gao, J. Broadband Polarization Conversion with Anisotropic PlasmonicMetasurfaces. Sci. Rep. 2017,7, 8841.https://doi.org/10.1038/s41598-017-09476-8
  5. Lavrentovich, M.D.; Sergan, T.A.; Kelly, J.R. Switchable Broadband Achromatic Half-Wave Plate with Nematic Liquid Crystals. Opt. Lett. 2004, 29, 1411–1413.https://doi.org/10.1364/OL.29.001411
  6. Zhuang, Z.; Kim, Y.J.; Patel, J.S. Achromatic Linear Polarization Rotator Using Twisted Nematic Liquid Crystals. Appl. Phys. Lett. 2000, 76, 3995–3997.https://doi.org/10.1063/1.126846
  7. Wu, Th. X.; Huang, Y.; Wu, S.-T. Design Optimization of Broadband Linear Polarization Converter Using Twisted Nematic Liquid Crystal.Jpn. J. Appl. Phys. 2003, 42, L39. https://doi.org/10.1143/JJAP.42.L39
  8. Bueno, J.M. Polarimetry Using Liquid-Crystal Variable Retarders: Theory and Calibration.J. Opt. A: Pure Appl. Opt. 2000, 2, 216–222.https://doi.org/10.1088/1464-4258/2/3/308
  9. Ren, H.; Fan, Y.H.; Lin, Y.H.; Wu, S.T. Tunable-Focus Microlens Arrays Using NanosizedPolymerdispersed Liquid Crystal Droplets. Opt. Commun. 2005, 247, 101–106.https://doi.org/10.1016/j.optcom.2004.11.033
  10. Liu, C.Y.; Chen, L.W. Tunable Photonic-Crystal Waveguide Mach-ZehnderInterferometer Achieved by Nematic Liquid-Crystal Phase Modulation. Opt. Express2004, 12, 2616–2624.https://doi.org/10.1364/OPEX.12.002616
  11. Hahn, J.;Kim, H.; Lim, Y.; Park, G.; Lee, B. Wide Viewing Angle Dynamic Holographic Stereogram with a Curved Array of Spatial Light Modulators.Opt. Express2008, 16, 12372–12386.https://doi.org/10.1364/OE.16.012372
  12. Apter, B.; Efron, U.; Bahat-Treidel, E. On the Fringing-Field Effect in Liquid-Crystal Beam-Steering Devices.Appl. Opt. 2004, 43, 11–19. https://doi.org/10.1364/AO.43.000011
  13. Yang,D.K.; Wu, S.T.Fundamentals of Liquid Crystal Devices.John Wiley & Sons, Ltd. 2006. ISBN: 0-470-01542-X.
  14. Rajasekharan-Unnithan, R.; Butt H.; Wilkinson T.D. Optical Phase Modulation Using a Hybrid Carbon Nanotube-Liquid-Crystal Nanophotonic Device.Opt. Lett. 2009, 34, 1237–1239.https://doi.0146-9592/09/081237-3/$15.00
  15. Nicolás, J.; Campos, J.; Yzuel, M.J. Phase and Amplitude Modulation of Elliptic Polarization States byNonabsorbing Anisotropic Elements: Application to Liquid-Crystal Devices.J. Opt. Soc. Am. A.2002, 19, 1013–1020.https://doi.org/10.1364/JOSAA.19.001013
  16. Vargas, J.; Uribe-Patarroyo, N.;Quiroga, J.A.; Alvarez-Herrero, A.; Belenguer T. Optical Inspection of Liquid Crystal Variable Retarder Inhomogeneities.Appl. Opt. 2010, 49, 568–574.https://doi.org/10.1364/AO.49.000568
  17. Fuh, A. Y.-G.; Chiang, J.-T.; Chien, Yu-Sh.; Chang, Ch.-J.; Lin, H.-Ch. Multistable Phase-Retardation Plate Based onGelator-Doped Liquid Crystals.Appl. Phys. Express2012, 5, 072503.http://dx.doi.org/10.1143/APEX.5.072503
  18. Safrani,A.; Abdulhalim, I. Liquid-Crystal Polarization Rotator and a Tunable Polarizer.Opt. Lett. 2009, 34,1801–1803.https://doi.org/10.1364/OL.34.001801
  19. Petriashvili, G.; Chanishvili,A.; Wardosanidze, Z. Cholesteric Liquid Crystal Mirror Based ImagingStokes Polarimeter.Appl. Opt. 2021, 60, 3187–3191. https://doi.org/10.1364/AO.422814
  20. Schnoor, N.P.;Niemeier, R.C.; Woods, A.L.; Rogers, J.D. Calibration of Liquid Crystal Variable Retarders Using a Common-Path Interferometer and Fit of a Closed-Form Expression for the Retardance Curve.Appl. Opt. 2020,59, 10673–10679. https://doi.org/10.1364/AO.408383
  21. Demchuk, Y.;Gunka, V.;Pyshyev, S.;Sidun, Y.;Hrynchuk, Y.;Kucinska-Lipka, J.;Bratychak, M. Slurry Surfacing Mixed on the Basis of Bitumen Modified with Phenol-Cresol-Formaldehyde Resin.Chem. Chem. Technol. 2020, 14, 251–256.https://doi.org/10.23939/chcht14.02.251
  22. Mukbaniani, O.;Tatrishvili, T.;Kvinikadze, N.;Bukia, T.; Pachulia, Z.;Pirtskheliani, N.;Petriashvili, G.Friedel-Crafts Reaction of Vinyl Trimethoxysilane with Styrene and Composite Materials on Their Base. Chem. Chem. Technol.2023, 17, 325–338.https://doi.org/10.23939/chcht17.02.325
  23. Iatsyshyn, O.;Astakhova, O.;Shyshchak, O.; Lazorko O.; Bratychak, M. Monomethacrylate Derivative of ED-24 Epoxy Resin and its Application. Chem. Chem. Technol.2013, 7, 73–77.https://doi.10.23939/chcht07.01.073
  24. Hanna, J.-I.;Ohno, A.;Iino, H. Charge Carrier Transport in Liquid Crystals. Thin Solid Films2014,554, 58–63. https://doi.10.1016/j.tsf.2013.10.051
  25. Baron, M.;Stepto, R.F.T. Definitions of Basic Terms Relating to Low-Molar-Mass and Polymer Liquid Crystals.Pure Appl. Chem. 2002, 74, 493–509.https://doi.10.1351/pac200274030493
  26. Espinet, P.; Esteruela, M.A.; Ore, L.A.; Serrano,J.L.; Sola, E. Transition Metal Liquid Crystals: Advanced Materials within the Reach of the Coordination Chemist.CoordChem Rev1992, 117, 215–274. https://doi. 10.1016/0010-8545(92)80025-M
  27. Niezgoda, I.; Jaworska, J.; Pociecha,D.; Galewski, Z. The Kinetics of the E-Z-E Isomerisationand Liquid-Crystalline Properties of Selected Azobenzene Derivatives Investigated by the Prism of the Ester Group Inversion.LiqCryst2015,42, 1148–1158. https://doi.10.1080/02678292.2015.1031198
  28. Obadovic, D.Z.; Stojanovic, M.;Bubnov, A.; Eber, N.; Cvetinov,M.; Vajda, A. Structural Studies on Different Types of Ferroelectric Liquid Crystalline Substances.Journal of Research in Physics2011, 35, 3–13.http://dx.doi.org/10.2478/v10242-012-0001-3