Photocatalysis Effect-Based Optical Information Recording on the Titanium Dioxide Nanoparticles and Luminescent Dye-Doped Polymer Nanocomposite

2025;
: pp. 549 - 556
1
Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University
2
Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University
3
Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University
4
Iv. Javakhishvili Tbilisi State University, 2 Institute of Macromolecular Chemistry and Polymeric Materials, Iv. Javakhishvili Tbilisi State University
5
Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University
6
Ivane Javakhishvili Tbilisi State University R.Agladze Institute of Inorganic Chemistry and Electrochemistr
7
Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University, Georgia
8
Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University, Georgia
9
Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University
10
Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University, Georgia

Titanium dioxide is the most widely used semiconductor substance as a photocatalytic material in self-cleaning surfaces, air and water purification systems, sterilization, hydrogen evolution, and photoelectrochemical conversion. In this work, we propose a photocatalysis effect-based optical information recording on the titanium dioxide nanoparticles and luminescent dye-doped polymer nanocomposite for the first time. The optical information was recorded as holographic gratings. Holographic and non-holographic methods were employed to record optical information on a polymer nanocomposite. A green laser beam and a halogen-tungsten lamp with a band-pass filter were used for this purpose. As a result, the high-density optical information was obtained, with an optical density of 500 mm⁻¹. The data recorded on the polymer nanocomposite is stable and durable.

[1] Mukbaniani, O.; Tatrishvili, T.; Kvinikadze, N.; Bukia, T.; Pachulia, Z.; Pirtskheliani, N.; Petriashvili, G. Friedel-Crafts Reaction of Vinyl Trimethoxysilane with Styrene and Composite Materials on Their Base. Chem. Chem. Technol. 2023, 17, 325– 338. https://doi.org/10.23939/chcht17.02.325

[2] Bukia, T.; Utiashvili, M.; Tsiskarishvili, M.; Jalalishvili, S.; Gogolashvili, A.; Tatrishvili, T.; Petriashvili, G. Synthesis of Some Azo Dyes Based on 2,3,3-Trimethyl-3H-indolenine. Chem. Chem. Technol. 2023, 17, 549–556. https://doi.org/10.23939/chcht17.03.549

[3] Makharadze, T.; Makharadze, G. Investigation of the Complex Formation Process of Lead (II) with Natural Macromolecular Organic Substances (Fulvic Acids) by the Solubility and Gel Chromatographic Methods. Chem. Chem. Technol. 2023, 17, 740–747. https://doi.org/10.23939/chcht17.04.740

[4] Petriashvili, G.; Chanishvili, A.; Ponjavidze, N.; Chubinidze, K.; Tatrishvili, T.; Kalandia, E.; Petriashvili, A.; Makharadze, T. Crystal Smectic G Phase Retarder for the Real-Time Spatial- Temporal Modulation of Optical Information. Chem. Chem. Technol. 2023, 17, 758–765. https://doi.org/10.23939/chcht17.04.758

[5] Tatrishvili, T.; Mukbaniani, O. Cyclic Silicon Organic Copolymers: Synthesis and Investigation. Review. Chem. Chem. Technol. 2024, 18, 131–142. https://doi.org/10.23939/chcht18.02.131

[6] Zozulya, G.; Kunty, О.; Shepida, M.; Kordan, V. Synthesis of Silver Nanoparticles and Silver-Gold Binary System by Galvanic Replacement in an Ultrasonic Field. Chem. Chem. Technol. 2024, 18, 342–349. https://doi.org/10.23939/chcht18.03.342

[7] Mekuye, B.; Abera, B. Nanomaterials: An Overview of Synthesis, Classification, Characterization, and Applications. Nano Select. 2023, 4, 486–501. https://doi.org/10.1002/nano.202300038

[8] Chubinidze, K.; Partsvania, B.; Sulaberidze, T.; Khuskivadze, A.; Davitashvili, E.; Koshoridze, N. Luminescence Enhancement in Nanocomposite Consisting of Polyvinyl Alcohol Incorporated Gold Nanoparticles and Nile Blue 690 Perchlorate. Appl. Opt. 2014, 53, 7177–7181. https://doi.org/10.1364/AO.53.007177

[9] Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. https://doi.org/10.1038/238037a0

[10] Carey, J.H.; Lawrence, J.; Tosine, H.M. Photodechlorination of PCBs in the Presence of Titanium Dioxide in Aqueous Suspensions. Bull. Environ. Contam. Toxicol. 1976, 16, 697–701. https://doi.org/10.1007/BF01685575

[11] Frank, S.N.; Bard, A.J. Heterogeneous Photocatalytic Oxidation of Cyanide and Sulfite in Aqueous Solutions at Semiconductor Powders. J. Phys. Chem. 1977, 81, 1484–1488. https://doi.org/10.1021/ja00443a081

[12] Xu, M.X.; Wang, Y.H.; Geng, J.F.; Jing, D.W. Photodecomposition of NOx on Ag/TiO2 Composite Catalysts in a Gas Phase Reactor. Chem. Eng. J. 2017, 307, 181–188. https://doi.org/10.1016/j.cej.2016.08.080

[13] Keller, A.A.; McFerran, S.; Lazareva, A. Suh, S. Global Life Cycle Releases of Engineered Nanomaterials. J Nanopart Res2013, 15, 1692. https://doi.org/10.1007/s11051-013-1692-4

[14] El-Hosainy, H.; Mine, Sh.; Toyao, T.; Shimizu, K-I.; Tsunoji, N.; Esmat, M.; Doustkhah, E.; El-Kemary, M.; Ide, Y. Mof-Like Silicate Stabilises Diiron to Mimic Uv-Shielding TiO2 Nanoparticle Materials. Today Nano 2022, 19, 100227. http://dx.doi.org/10.2139/ssrn.4045989

[15] Gyulavári, T.; Kovács, K.; Kovács, Z.; Bárdos, E.; Kovács, G.; Baán, K.; Magyari, K.; Veréb, G.; Pap, Z.; Hernadi, K. Preparation and Characterization of Noble Metal Modified Titanium Dioxide Hollow Spheres – New Insights Concerning the Light Trapping Efficiency. Appl. Surf. Sci. 2020, 534, 147327. https://doi.org/10.1016/j.apsusc.2020.147327

[16] Solymos, K.; Babcsányi, Iz.; Ariya, B.; Gyulavári, T.; Ágoston, Á.; Szamosvölgyi, Á.; Kukovecz, Á.; Kónya, Z.; Farsang, A.; Pap, Z. Photocatalytic and Surface Properties of Titanium Dioxide Nanoparticles in Soil Solutions. Environ. Sci.: Nano 2024, 11, 1–29. https://doi.org/10.1039/D3EN00622K

[17] Chimmikuttanda, S. P.; Naik, A.; Akple, M. S.; Singh, R. Processing of Hybrid TiO2 Semiconducting Materials and their Environmental Application. Terrestrial and Aquatic Environments 2022, 10, 277–300. https://doi.org/10.1016/B978-0-323-90485-8.00011-4 

[18] Jaybhaye, S.; Shinde, N.; Jaybhaye, Sh.; Narayan H. Photocatalytic Degradation of Organic Dyes Using Titanium Dioxide (TiO2) and Mg-TiO2 Nanoparticles. J. Nanotechnol Nanomaterials 2022, 3, 67–76. https://doi.org/10.33696/Nanotechnol.3.032

[19] Gisbertz, S.; Pieber, B. Heterogeneous. Photocatalysis in Organic Synthesis. Chem Photo Chem. 2020, 4, 456–475. https://doi.org/10.1002/cptc.202000014

[20] Li, R.; Li, T.; Zhou, Q. Impact of Titanium Dioxide (TiO2) Modification on Its Application to Pollution Treatment-A Review. Catalysts 2020, 10, 804. https://doi.org/10.3390/catal10070804

[21] Lumeau, J. Photosensitive Materials: Optical properties and applications. Optics / Photonic; Aix Marseille Université, 2012; pp 1-111. https://hal.science/tel-01274421v1

[22] Petriashvili, G.; De Santo, M.; Devadze, L.; Zurabishvili, Ts.; Sepashvili, N.; Gary, R.; Riccardo Barberi, R. Rewritable Optical Storage with a Spiropyran Doped Liquid Crystal Polymer Film. Macromol. Rapid Commun. 2016, 37, 500–505. https://doi.org/10.1002/marc.201500626

[23] Murray, M.; Naydenova, Iz.; Martin, S. Review of Recent Advances in Photosensitive Polymer Materials and Requirements for Transmission Diffractive Optical Elements for LED Light Sources. Opt. Mater. Express 2023, 13, 3481–3501. https://doi.org/10.1364/OME.502234

[24] Liao, Y.-Y.; Liu, J.-H. Holographic Gratings Formed in Photosensitive Polymer Materials with a Liquid Crystalline Monomer. React. Funct. Polym. 2009, 69, 281–286. https://doi.org/10.1016/j.reactfunctpolym.2009.01.011