Dependence of Linear Isobaric Thermal Expansivity of Polymers on Their Flexibility

: pp. 796 - 799
Department of Materials Science and Engineering, University of North Texas
Laboratory of Advanced Polymers & Optimized Materials (LAPOM), Department of Materials Science and Engineering and Department of Physics, University of North Texas
Department of Materials Science and Engineering, University of North Texas; Department of Organic Chemistry, Faculty of Science, Menoufia University

We have obtained an equation for polymers relating their flexibility $Y$ defined in 2019 to the linear isobaric thermal expansivity $\alpha_L$. This way we have connected quantitatively a thermodynamic property to a mechanical one. The expansivity is important since different materials expand at different rates on the increase of temperature; the same applies to contraction resulting from cooling. Thus, a temperature change can cause disintegration of a composite with no mechanical force involved.

  1. Hambleton, R.; Naylor, D. Innovative on-Line Learning of Ferrous Metallurgy.J. Mater. Ed. 2007, 29, 67-78.
  2. Meseguer-Valdenebro, J.L.; Miguel, V.;Caravaca, M.;Portolés, A.;Gimeno, F. Teaching Mechanical Properties of Different Steels for Engineering Students.J. Mater. Ed. 2015, 37, 103-118.
  3. Wadood, A.;Ozair, H.;Muhyuddin, M. Titanium Based Shape Memory Alloys from Materials Education Point of View.J. Mater. Ed. 2019, 41,137-148.
  4. Brostow, W.;HaggLobland, H.E.;Narkis, M. Sliding Wear, Viscoelasticity, and Brittleness of Polymers.J. Mater. Res. 2006, 21, 2422.
  5. Lucas, E.F.;Soares, B.G.; Monteiro, E. Caracterização de polimeros; e-papers ServiçosEditoriaisLtda: Rio de Janeiro, 2001.
  6. Gedde, U.W.; Hedenqvist, M.S. Fundamental Polymer Science, 2ndEdition; Springer Nature Switzerland AG, 2019.
  7. Menard, K.P.; Menard, N.R. Dynamic Mechanical Analysis, 3rdEdition; CRC Press Boca Raton FL, 2020.
  8. Lu, S.; Lin, J.; Liu, K.; Yue, S.; Ren, K.; Tan, F.; Whang, Z.; Jin, P.; Qu, S.; Whang, Z. Large Area Flexible Polymer Solar Cells with High Efficiency Enabled by Imprinted Ag Grid and Modified Buffer Layer.Acta Mater. 2017, 130, 208-214.
  9. Cordill, M.J.; Fischer, F.D.;Rammerstorfer, F.G.;Dehm, G. Adhesion Energies of Cr Thin Films on Polyimide Determined from Buckling: Experiment and Model.Acta Mater. 2010, 58, 5520-5531.
  10. Katerelos, D.G.; McCartney, L.N.;Galiotis, C. Local Strain re-Distribution and Stiffness Degradation in Cross-Ply Polymer Composites under Tension.Acta Mater. 2005, 53, 3335-3343.
  11. Brostow, W.;HaggLobland, H.E.; Hong, H.J.; Lohse, S.;Osmanson, A.T. Flexibility of Polymers Defined and Related to Dynamic Friction.J. Mater. Sci. Res. 2019, 8, 31-35.
  12. Pauling, L. The Chemical Bond and the Structure of Molecules and Crystals, 3rdEdition; Cornell University Press: Ithaca, NY, 1960.
  13. Brostow, W.;Fałtynowicz, H.;Gencel, O.;Grigoriev, A.;HaggLobland, H.E.; Zhang, D. Mechanical and Tribological Properties of Polymers and Polymer-Based Composites.Chem. Chem. Technol. 2020, 14, 514-520.
  14. Brostow, W.;HaggLobland, H.E. Brittleness of Materials: Implications for Composites and Relation to Impact Strength.J. Mater. Sci. 2010, 45, 242-250.
  15. Brostow, W.; Osmanson, A.T. From Mechanics to Thermodynamics: A Relation between the Brittleness and the Thermal Expansivity for Polymers.Materials Letters: X 2019, 1, 100005.
  16. Brostow, W.; HaggLobland, H.E. Survey of Relations of Chemical Constituents in Polymer-Based Materials with Brittleness and its Associated Properties. Chem. Chem. Technol. 2016, 10, 595-600.
  17. Kelvin, William Thomson. Motions of Viscous Liquid.Mathematical and physical papers1890, 436-465.
  18. Brostow, W.; HaggLobland, H.E. Materials: Introduction and Applications; John Wiley & Sons, 2017.
  19. Tóth, L.F.;Szebényi, G.; Sukumaran, J.;DeBaets, P. TribologicalCharacterization of Nanoparticle Filled PTFE: Wear-Induced Crystallinity Increase and Filler Accumulation. Express Polym. Lett. 2021,15, 972-986.
  20. Huang, M.Z.;Nomai, J.;Schlarb, A.K. The Effect of Different Processing, Injection Molding (IM) and Fused Deposition Modeling (FDM), on the Environmental Stress Cracking (ESC) Behavior of Filled and Unfilled Polycarbonate (PC).Express Polym. Lett. 2021, 15, 194-202.
  21. Begović, N.N.;Blagojević, V.A.;Ostojić, S.B.;Radulović, A.M.;Poleti, D.;Minić, D.M. Thermally Activated 3D to 2D Structural Transformation of [Ni2(en)2(H2O)6(pyr)]•4H2O Flexible Coordination Polymer.Mater. Chem. Phys. 2015, 149-150, 105-112.
  22. Vempati, S.; Natarajan, T.S. Flexible Polymer Microtubesand Microchannelsvia Electrospinning.Mater. Lett.2011,65, 3493-3495.
  23. Laskarakis, A.; Georgiou, D.;Logothetidis, S.;Amberg-Scwhab, S.; Weber, U. Study of the Optical Response of Hybrid Polymers with Embedded Inorganic Nanoparticles for Encapsulation of Flexible Organic Electronics.Mater. Chem. Phys. 2009, 115, 269-274.
  24. Sinha, K.;Meng, L.; Xu, Q.; Wang, X. Laser Induction of Graphene onto Lignin-Upgraded Flexible Polymer Matrix.Mater. Lett.2021, 286, 129268.
  25. Jiang, D.; Al Shraida, H.A.; Ning, F. Non-Planar Polymer-Based Flexible Electronics Fabricated by a Four-Axis Additive Manufacturing Process.Mater. Lett.2021, 294, 129748.
  26. Gomez-Solis, C.;Mtz-Enriquez, A.I.; Oliva, A.; Rosillo-de la Torre, A.; Oliva, J. Bioactivity of Flexible Graphene Composites Coated with a CaSiO3/Acrylic Polymer Membrane. Mater. Chem. Phys.2020,241, 122358.
  27. Linse, P.;Källrot, N. Polymer Adsorption from Bulk Solution onto Planar Surfaces: Effect of Polymer Flexibility and Surface Attraction in Good Solvent. Macromolecules 2010, 43, 2054–2068.
  28. Manterola, J.;Zurbitu, J.;Renart, J.;Turon, A.;Urresti, I. Durability Study of Flexible Bonded Joints: The Effect of Sustained Loads in Mode I Fracture Tests.Polym. Test.2020, 88, 106570.
  29. Hsu, J.-S.; Juan, W.-P. Optical Polarization Measurement for Measuring Deflection Radius of the Optically Anisotropic Flexible-Polymeric Substrate.Polym. Test. 2020, 84, 106376.
  30. Fan, J.T.;Weerheijm, J.;Sluys, L.J. Deformation to Fracture Evolution of a Flexible Polymer under Split Hopkinson Pressure Bar Loading.Polym. Test. 2018, 70, 192-196.
  31. Molnár, K.;Virág, A.D.;Hálasz, M. Shear and Yarn Pull-Out Grip for Testing Flexible Sheets by Universal Load Machines.Polym. Test. 2020, 82, 106345.
  32. Rivetti, C.; Walker C.; Bustamante C. Polymer Chain Statistics and Conformational Analysis of DNA Molecules with Bends or Sections of Different Flexibility.J.Molec. Biol.1988, 280, 41-59.
  33. Wunderlich, B.;Grebowicz, J.ThermotropicMesophasesand Mesophase Transitions of Linear, Flexible Macromolecules.InLiquid Crystal Polymers II/III, Advances in Polymer Science, vol. 60/61;Platé, N.A., Ed.; Springer: Berlin – Heidelberg, 1984.
  34. Khokhlov, A.R.; Semenov, A.N. On the theory of liquid-crystalline ordering of polymer chains with limited flexibility.J. Statist. Phys.1985, 38, 161–182.
  35. Dubov, O.;Marcé, J.G.;Fortuny, A.;Fabregat, A.; Stüber, F.; Font, J. Flexible Semi-Amorphous Carbon Nitride Films with Outstanding Electrochemical Stability Derived from Soluble Polymeric Precursors. J. Mater.Sci.2022, 57, 4970–4989.
  36. Balart, R.;Montanes, N.;Dominici, F.;Boronat, T.; Torres-Giner, S. Environmentally Friendly Polymers and Polymer Composites.Materials 2020, 13, 4892.