Fabrication of Activated Carbon/Chitosan Hybrid Material for Adsorptive Removal of Pb (II)

2023;
: pp. 903 - 915
1
Department of Chemistry, Faculty of Science, University of Kelaniya
2
Department of Indigenous Medical Resources, Faculty of Indigenous Health Sciences and Technology, Gampaha Wickramarachchi University of Indigenous Medicine
3
Department of Chemistry, University of Kelaniya

In this study, a novel, cost-effective and environmentally friendly activated carbon/chitosan hybrid material (ACCHM) was synthesized by incorporating surface properties of both the activated carbon derived from rice husk and chitosan extracted from “Black Tiger” shrimp shells to generate a highly functionalized porous material with enhanced Pb (II) adsorption capacity for water purification.

  1. Bolan, N.S.; Adriano, D.C.; Naidu R. Role of Phosphorus in (Im)mobilization and Bioavailability of Heavy Metals in the Soil-Plant System. In Reviews of Environmental Contamination and Toxicology; Springer: New York, 2003; pp 1-44. https://doi.org/10.1007/0-387-21725-8_1
  2. Heil, D.M.; Samani, Z.; Hanson, A.T.; Rudd B. Remediation of Lead Contaminated Soil by EDTA. I. Batch and Column Studies. Water Air Soil Pollut. 1999, 113, 77–95. https://doi.org/10.1023/A:1005032504487
  3. Matlock, M.M.; Howerton, B.S.; Atwood, D.A. Irreversible Precipitation of Mercury and Lead. J. Hazard. Mater.2001, 84, 73–82. https://doi.org/10.1016/S0304-3894(01)00190-X
  4. Tao, Y.; Ye, L.; Pan, J.; Wang, Y.; Tang, B. Removal of Pb (II) from Aqueous Solution on Chitosan/TiO2 Hybrid Film. J. Hazard. Mater. 2009, 161, 718–722. https://doi.org/10.1016/j.jhazmat.2008.04.012
  5. Fu, F.; Wang, Q. Removal of Heavy Metal Ions from Wastewaters: A Review. J. Environ. Manage. 2011, 92, 407–418. https://doi.org/10.1016/j.jenvman.2010.11.011
  6. Demirbas, A. Heavy Metal Adsorption onto Agro-Based Waste Materials: A Review. J. Hazard. Mater. 2008, 157, 220–229. https://doi.org/10.1016/j.jhazmat.2008.01.024
  7. Fiyadh, S.S.; AlSaadi, M.A.; Jaafar, W.Z.; AlOmar, M.K.; Fayaed, S.S.; Mohd, N.S.; Hin, L.S.; El-Shafie, A. Review on Heavy Metal Adsorption Processes by Carbon Nanotubes. J. Clean. Prod. 2019, 230, 783–793. https://doi.org/10.1016/j.jclepro.2019.05.154
  8. Dias, J.M.; Alvim-Ferraz, M.C.; Almeida, M.F.; Rivera-Utrilla, J.; Sánchez-Polo, M. Waste Materials for Activated Carbon Preparation and its Use in Aqueous-Phase Treatment: A Review. J. Environ. Manage. 2007, 85, 833–846. https://doi.org/10.1016/j.jenvman.2007.07.031
  9. Jusoh, A.; Shiung, L.S.; Noor, M.J.M.M. A Simulation Study of the Removal Efficiency of Granular Activated Carbon on Cadmium and Lead. Desalination 2007, 206, 9–16. https://doi.org/10.1016/j.desal.2006.04.048
  10. Jadhav, A.; Mohanraj, G. Synthesis of Activated Carbon from Cocos nucifera Leaves Agrowaste by Chemical Activation Method. Chem. Chem. Technol. 2016, 10, 201–208. https://doi.org/10.23939/chcht10.02.201
  11. Macalalad, A.; Ebete, Q.R.; Gutierrez, D.; Ramos, M.; Magoling, B.J. Kinetics and Isotherm Studies on Adsorption of Hexavalent Chromium Using Activated Carbon from Water Hyacinth. Chem. Chem. Technol. 2021, 15, 1–8. https://doi.org/10.23939/chcht15.01.001
  12. Abdulrazak, S.; Hussaini, K.; Sani, H.M. Evaluation of Removal Efficiency of Heavy Metals by Low-Cost Activated Carbon Prepared from African Palm Fruit. Appl. Water Sci. 2017, 7, 3151–3155. https://doi.org/10.1007/s13201-016-0460-x
  13. Hasanzadeh, M.; Simchi, A.; Shahriyari, F.H. Nanoporous Composites of Activated Carbon-Metal Organic Frameworks for Organic Dye Adsorption: Synthesis, Adsorption Mechanism and Kinetics Studies. J. Ind. Eng. Chem. 2020, 81, 405–414. https://doi.org/10.1016/j.jiec.2019.09.031
  14. Silva, T.L.; Cazetta, A.L.; Souza, P.S.C.; Zhang, T.; Asefa, T.; Almeida, V.C. Mesoporous Activated Carbon Fibers Synthesized from Denim Fabric Waste: Efficient Adsorbents for Removal of Textile Dye from Aqueous Solutions. J. Clean. Prod. 2018, 171, 482–490. https://doi.org/10.1016/j.jclepro.2017.10.034
  15. Patnukao, P.; Kongsuwan, A.; Pavasant, P. Batch Studies of Adsorption of Copper and Lead on Activated Carbon from Eucalyptus camaldulensis Dehn. Bark. J. Environ. Sci. 2008, 20, 1028–1034. https://doi.org/10.1016/S1001-0742(08)62145-2
  16. Guo, H.-L.; Wang, X.-F.; Qian, Q.-Y.; Wang, F.-B.; Xia, X.-H. A Green Approach to the Synthesis of Graphene Nanosheets. ACS nano 2009, 3, 2653–2659. https://doi.org/10.1021/nn900227d
  17. Guo, M; Qiu, G.; Song, W. Poultry Litter-Based Activated Carbon for Removing Heavy Metal Ions in Water. Waste Manage. 2010, 30, 308–315. https://doi.org/10.1016/j.wasman.2009.08.010
  18. Gerente, C.; Lee, V.K.C.; Le Cloirec, P.; McKay, G. Application of Chitosan for the Removal of Metals From Wastewaters by Adsorption – Mechanisms and Models Review. Crit Rev Environ Sci Technol 2007, 37, 41–127. https://doi.org/10.1080/10643380600729089
  19. Dutta, P.K.; Pradeep; Dutta, J.; Tripathi, V.S. Chitin and Chitosan: Chemistry, Properties and Applications. J. Sci. Ind. Res. 2004, 63, 20–31.
  20. Kalyani, S.; Krishnaiah, A.; Boddu, V.M. Adsorption of Divalent Cobalt from Aqueous Solution onto Chitosan–Coated Perlite Beads as Biosorbent. Sep Sci Technol 2007, 42, 2767–2786. https://doi.org/10.1080/01496390701511457
  21. Hydari, S.; Sharififard, H.; Nabavinia, M.; Parvizi, M.R. A Comparative Investigation on Removal Performances of Commercial Activated Carbon, Chitosan Biosorbent and Chitosan/Activated Carbon Composite for Cadmium. Chem. Eng. J. 2012, 193-194, 276–282. https://doi.org/10.1016/j.cej.2012.04.057
  22. Khan, T.A.; Peh, K.K.; Ch’ng, H.S. Reporting Degree of Deacetylation Values of Chitosan: The Influence of Analytical Methods. J. Pharm. Pharmaceut. Sci. 2002, 5, 205–212.
  23. Laine, J.; Calafat, A.; labady, M. Preparation and Characterization of Activated Carbons from Coconut Shell Impregnated with Phosphoric Acid. Carbon 1989, 27, 191–195. https://doi.org/10.1016/0008-6223(89)90123-1
  24. Paluszkiewicz, C.; Stodolak, E.; Hasik, M.; Blazewicz, M. FT-IR Study of Montmorillonite–Chitosan Nanocomposite Materials. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 79, 784–88. https://doi.org/10.1016/j.saa.2010.08.053
  25. Priyadarshini, B.; Rath, P. P.; Behera, S.S.; Panda, S.R.; Sahoo, T.R.; Parhi, P.K. Kinetics, Thermodynamics and Isotherm Studies on Adsorption of Eriochrome Black-T from Aqueous Solution Using Rutile TiO2. IOP Conf. Ser.: Mater. Sci. Eng. 2018, 012051. http://doi.org/10.1088/1757-899X/310/1/012051
  26. Nethaji, S.; Sivasamy, A.; Mandal, A.B. Adsorption Isotherms, Kinetics and Mechanism for the Adsorption of Cationic and Anionic Dyes onto Carbonaceous Particles Prepared from Juglans regia Shell Biomass. Int J Environ Sci Technol (Tehran) 2013, 10, 231–242. https://doi.org/10.1007/s13762-012-0112-0
  27. Sharma, M.; Hazra, S.; Basu, S. Kinetic and Isotherm Studies on Adsorption of Toxic Pollutants Using Porous ZnO@SiO2 Monolith. J. Colloid Interface Sci. 2017, 504, 669–679. https://doi.org/10.1016/j.jcis.2017.06.020
  28. Achmad, A.; Kassim, J.; Suan, T.K.; Amat, R.C.; Seey, T.L. Equilibrium, Kinetic and Thermodynamic Studies on the Adsorption of Direct Dye onto a Novel Green Adsorbent Developed from Uncaria Gambir Extract. J. Phys. Sci. 2012, 23, 1–13.
  29. Cacicedo, M.L.; Manzo, R.M.; Municoy, S.; Bonazza, H.L.; Islan, G.A.; Desimone, M.; Bellimo, M.; Mammarella, E.J.; Castro, G.R. Immobilized Enzymes and their Applications. In Advances in Enzyme Technology; Singh, R.S.; Singhania, R.R., Eds.; Christian Larroche Elsevier, 2019; pp.169-200. https://doi.org/10.1016/B978-0-444-64114-4.00007-8
  30. Gao, W.; Majumder, M.; Alemany, L.B.; Narayanan, T.N.; Ibarra, M.A.; Pradhan, B.K.; Ajayan, P.M. Engineered Graphite Oxide Materials for Application in Water Purification. ACS Appl. Mater. Interfaces 2011, 3, 1821–1826. https://doi.org/10.1021/am200300u
  31. Yu, H.; Zha, B.; Chaoke, B.; Li, R.; Xing, R. High-efficient Synthesis of Graphene Oxide Based on Improved Hummers Method. Sci. Rep. 2016, 6, 36143 https://doi.org/10.1038/srep36143