Strengthening of Mullite Ceramics with Silver Reinforcements

: pp. 1 - 6
Universidad Autónoma Metropolitana
Materials Department, Universidad Autónoma Metropolitana
Materials Department, Universidad Autónoma Metropolitana
Laboratorio de Microscopía Electrónica de Ultra Alta a Resolución
Industrial Materials Research and Development Laboratory, Universidad Autónoma del Estado de México
Manufacture Department, Universidad Politécnica de Victoria

The article contains research materials on solving the problem of utilization of waste phosphogypsum by using it in the layers of the road base. For this purpose, composite mixtures based on raw dump phosphogypsum were prepared. The composition of the composite mixtures was optimized to maximize the phosphogypsum content. The phosphogypsum was stabilized with ground granulated blast furnace slag and Portland cement. Laboratory tests have shown that the phosphogypsum-based composite materials meet the requirements of the National Standard of Ukraine DSTU 9177-3:2022 in terms of uniaxial compressive strength and frost resistance. The newly formed mineral phases during the hydration of composite materials based on phosphogypsum-ground granulated blast furnace slag-Portland cement were described using X-ray diffractometric analysis.

  1. Ighodaro, O.L.; Okoli, O.I. Fracture Toughness Enhancement for Alumina Systems: A Review. Int. J. Appl. Ceram. Technol. 2008, 5, 313–323.
  2. Miyazaki, H.; Yoshizawa, Y.; Hirao K. Preparation and Mechanical Properties of 10 vol. % Zirconia/Alumina Composite with Fine-Scale Fibrous Microstructure by Co-Extrusion Process. Mater. Lett. 2004, 58, 1410–1414.
  3. Hotta, T.; Abeb, H.; Naitob, M.; Takahashic, M.; Uematsud, K.; Katod, Z. Effect of Coarse Particles on the Strength of Alumina Made by Slip Casting. Powder Technol. 2005, 149, 106–111.
  4. Banerjee, T.; Dey, S.; Sekhar, A. P. Design of Alumina Reinforced Aluminium Alloy Composites with Improved Tribo- Mechanical Properties: A Machine Learning Approach. Trans.Indian Inst. Met. 2020, 73, 3059–3069.
  5. Nan, L.Y.; Zhang, W.Z.; Cao, Y.F.; Zhang, T.E. Properties and Application of Alumina Reinforced Aluminum Composite. Adv. Mat. Res. 2013, 853, 68–74.
  6. Liu, C.; Zhang, J.; Sun, J.; Zhang, X. Addition of Al–Ti–B master Alloys to Improve the Performances of Alumina Matrix Ceramic Materials. Ceram. Int. 2007, 33, 1319–1324.
  7. Krishnan, S.V.; Ambalam, M.M.M.; Venkatesan, R. Mayandib, J.; Venkatachalapathy, V. Technical Review: Improvement of Me- chanical Properties and Suitability Towards Armor Applications – Alumina Composites. Ceram. Int. 2021, 45, 23693–23701.
  8. Konopka, K.; Szafran, M.J. Fabrication of Al2O3–Al Composites by Infiltration Method and their Characteristic. Mater. Proc.Technol. 2006, 175, 266–270.
  9. Mojović, Z.; Novaković, T.; Mojović, M. Electrochemical and Structural Properties of Ni(II)-Alumina Composites as an Annealing Temperature Function. Sci. Sint. 2019, 51, 339–351.
  10. Choo, T.F.; Amran, M.; Salleh, M.; Kok, K.Y.; Matori, K.A.A Review on Synthesis of Mullite Ceramics from Industrial Wastes. Recycling 2019, 4, 391–401.
  11. Villar, M.P.; Gago-Duport, L.; Garcia, R. Comportamiento de Mullitas a Alta Temperatura: Estudio Mediante Difracción de Rayos X Bull. Spain Soc. Ceram. Vid. 2004, 43, 135–137.
  12. Claussen, N. Transformation-Toughened Ceramics. In Advanced Energy Technologies; Kröckel, H.; Merz, M.; Van der Biest, Eds.; Brussels and Luxembourg, 1984; pp 51–86.
  13. Miranda-Hernández, J.G.; Herrera-Hernández, H.; Refugio- García, E.; Rocha-Rangel, E.; Juárez-García, J.M. Compositos Cerámicos Base Mullita/Co, Ti, Ni, Cu y ZrO2 Manufacturados por Metalurgia de Polvos. Avances en Ciencias e Ingeniería 2014, 5, 83–93.
  14. Yu-Ming, T.; Peng-Feil, Z.; Xiang-Chen, K.; Ai-Ping, L.; Kai- Yue, W.; Yue-Sheng, C.; Zhan-Gang, L.; De-Fu, L.V. The Effect of Sintering Temperature on the Structure and Properties of Corundum/Mullite Ceramics. Sci. Sinter. 2015, 47, 273–278.
  15. Téllez-Arias, M.G.; Miranda-Hernández, J.G.; Olea-Mejía, O.; Lemus-Ruiz, J.; Terrés, E. Effect of Silver Nanoparticless in the Structure and Mechanical Properties of Mullite/Ag Cermets. Sci.Sinter. 2019, 51, 175–187.
  16. Evans, A.G.; Charles, E.A. Fracture Toughness Determinations by Indentation. J. Am. Ceram. Soc. 1976, 59, 371–372.
  17. ASTM E384 – 16, Standard Test Method for Microindentation Hardness of Materials, 2016.
  18. Suryanarayana, C. Mechanical Alloying and Milling; Marcel Dekker: New York, 2004.
  19. Mansoor, M.; Shahid, M. Carbon Nanotube-Reinforced Aluminum Composite Produced by Induction Melting. J. Appl. Res. Technol. 2016, 14, 215–224.
  20. [accessed sept 30, 2022].
  21. Allen, W.; Burton, K.; Ong, T.; Rea, I.; Chan, Y. On the Estimation of Average Crystallite Size of Zeolites from the Scherrer Equation: A Critical Evaluation of its Application to Zeolites with One-Dimensional Pore Systems. Microporous Mesoporous Mater. 2009, 117, 75–90.
  22. Ushio, M.; Sumiyoshi, Y. The Wetting of an Alumina Substrate by Liquid Silver. Bull. Chem. Soc. Jpn. 1987, 60, 2041– 2045.
  23. Loehman, R.E.; Tomsia, A.P. Wetting and Joining of Mullite Ceramics by Active-Metal Braze Alloys J. Am. Ceram. Soc. 1994, 77, 271–274.
  24. Mullite Engineering Properties., 2013 [accessed sept 30, 2022].