Зміцнення мулітової кераміки армуванням сріблом

1
Universidad Autónoma Metropolitana
2
Materials Department, Universidad Autónoma Metropolitana
3
Materials Department, Universidad Autónoma Metropolitana
4
Laboratorio de Microscopía Electrónica de Ultra Alta a Resolución
5
Industrial Materials Research and Development Laboratory, Universidad Autónoma del Estado de México
6
Manufacture Department, Universidad Politécnica de Victoria

Композити на основі муліту, армовані частинками срібла, отримано порошковими методами. Спікання композитів проводили після інтенсивного змішування порошків прекурсорів. Виявлено, що добавки срібла мають значний вплив на механічні властивості, оскільки міцність на злам збільшилася до 350 %. Мікроструктура композитів представлена зернами з морфологією пластівців.

  1. Ighodaro, O.L.; Okoli, O.I. Fracture Toughness Enhancement for Alumina Systems: A Review. Int. J. Appl. Ceram. Technol. 2008, 5, 313–323. http://dx.doi.org/10.1111/j.1744-7402.2008.02224.x
  2. Miyazaki, H.; Yoshizawa, Y.; Hirao K. Preparation and Mechanical Properties of 10 vol. % Zirconia/Alumina Composite with Fine-Scale Fibrous Microstructure by Co-Extrusion Process. Mater. Lett. 2004, 58, 1410–1414.https://doi.org/10.1016/j.matlet.2003.09.037
  3. Hotta, T.; Abeb, H.; Naitob, M.; Takahashic, M.; Uematsud, K.; Katod, Z. Effect of Coarse Particles on the Strength of Alumina Made by Slip Casting. Powder Technol. 2005, 149, 106–111. https://doi.org/10.1016/j.powtec.2004.11.004
  4. Banerjee, T.; Dey, S.; Sekhar, A. P. Design of Alumina Reinforced Aluminium Alloy Composites with Improved Tribo- Mechanical Properties: A Machine Learning Approach. Trans.Indian Inst. Met. 2020, 73, 3059–3069. https://doi.org/10.1007/s12666-020-02108-2
  5. Nan, L.Y.; Zhang, W.Z.; Cao, Y.F.; Zhang, T.E. Properties and Application of Alumina Reinforced Aluminum Composite. Adv. Mat. Res. 2013, 853, 68–74.https://doi.org/10.4028/www.scientific.net/AMR.853.68
  6. Liu, C.; Zhang, J.; Sun, J.; Zhang, X. Addition of Al–Ti–B master Alloys to Improve the Performances of Alumina Matrix Ceramic Materials. Ceram. Int. 2007, 33, 1319–1324. https://doi.org/10.1016/j.ceramint.2006.04.014
  7. Krishnan, S.V.; Ambalam, M.M.M.; Venkatesan, R. Mayandib, J.; Venkatachalapathy, V. Technical Review: Improvement of Me- chanical Properties and Suitability Towards Armor Applications – Alumina Composites. Ceram. Int. 2021, 45, 23693–23701.https://doi.org/10.1016/j.ceramint.2021.05.146
  8. Konopka, K.; Szafran, M.J. Fabrication of Al2O3–Al Composites by Infiltration Method and their Characteristic. Mater. Proc.Technol. 2006, 175, 266–270.https://doi.org/10.1016/j.jmatprotec.2005.04.046
  9. Mojović, Z.; Novaković, T.; Mojović, M. Electrochemical and Structural Properties of Ni(II)-Alumina Composites as an Annealing Temperature Function. Sci. Sint. 2019, 51, 339–351. https://doi.org/10.2298/SOS1903339M
  10. Choo, T.F.; Amran, M.; Salleh, M.; Kok, K.Y.; Matori, K.A.A Review on Synthesis of Mullite Ceramics from Industrial Wastes. Recycling 2019, 4, 391–401. https://doi.org/10.3390/recycling4030039
  11. Villar, M.P.; Gago-Duport, L.; Garcia, R. Comportamiento de Mullitas a Alta Temperatura: Estudio Mediante Difracción de Rayos X Bull. Spain Soc. Ceram. Vid. 2004, 43, 135–137. https://doi.org/10.3989/cyv.2004.v43.i2.485
  12. Claussen, N. Transformation-Toughened Ceramics. In Advanced Energy Technologies; Kröckel, H.; Merz, M.; Van der Biest, Eds.; Brussels and Luxembourg, 1984; pp 51–86.
  13. Miranda-Hernández, J.G.; Herrera-Hernández, H.; Refugio- García, E.; Rocha-Rangel, E.; Juárez-García, J.M. Compositos Cerámicos Base Mullita/Co, Ti, Ni, Cu y ZrO2 Manufacturados por Metalurgia de Polvos. Avances en Ciencias e Ingeniería 2014, 5, 83–93. https://www.redalyc.org/articulo.oa?id=323632128005
  14. Yu-Ming, T.; Peng-Feil, Z.; Xiang-Chen, K.; Ai-Ping, L.; Kai- Yue, W.; Yue-Sheng, C.; Zhan-Gang, L.; De-Fu, L.V. The Effect of Sintering Temperature on the Structure and Properties of Corundum/Mullite Ceramics. Sci. Sinter. 2015, 47, 273–278. https://doi.org/10.2298/SOS1503273Y
  15. Téllez-Arias, M.G.; Miranda-Hernández, J.G.; Olea-Mejía, O.; Lemus-Ruiz, J.; Terrés, E. Effect of Silver Nanoparticless in the Structure and Mechanical Properties of Mullite/Ag Cermets. Sci.Sinter. 2019, 51, 175–187. https://doi.org/10.2298/SOS1902175T
  16. Evans, A.G.; Charles, E.A. Fracture Toughness Determinations by Indentation. J. Am. Ceram. Soc. 1976, 59, 371–372. https://doi.org/10.1111/j.1151-2916.1976.tb10991.x
  17. ASTM E384 – 16, Standard Test Method for Microindentation Hardness of Materials, 2016.
  18. Suryanarayana, C. Mechanical Alloying and Milling; Marcel Dekker: New York, 2004.
  19. Mansoor, M.; Shahid, M. Carbon Nanotube-Reinforced Aluminum Composite Produced by Induction Melting. J. Appl. Res. Technol. 2016, 14, 215–224.https://doi.org/10.1016/j.jart.2016.05.002
  20. http://rruff.info/Mullite/R141103 [accessed sept 30, 2022].
  21. Allen, W.; Burton, K.; Ong, T.; Rea, I.; Chan, Y. On the Estimation of Average Crystallite Size of Zeolites from the Scherrer Equation: A Critical Evaluation of its Application to Zeolites with One-Dimensional Pore Systems. Microporous Mesoporous Mater. 2009, 117, 75–90. https://doi.org/10.1016/j.micromeso.2008.06.010
  22. Ushio, M.; Sumiyoshi, Y. The Wetting of an Alumina Substrate by Liquid Silver. Bull. Chem. Soc. Jpn. 1987, 60, 2041– 2045. https://doi.org/10.1246/bcsj.60.2041
  23. Loehman, R.E.; Tomsia, A.P. Wetting and Joining of Mullite Ceramics by Active-Metal Braze Alloys J. Am. Ceram. Soc. 1994, 77, 271–274. https://doi.org/10.1111/j.1151-2916.1994.tb06989.x
  24. Mullite Engineering Properties. http://accuratus.com/mullite.html, 2013 [accessed sept 30, 2022].