Measures for Immobilization of Radioactive Waste in the Structure of Glass and Glass-Ceramics under Martial Law

2025;
: pp. 297 - 306
1
Department of Chemistry and Integrated Technologies, O.M. Beketov National University of Urban Economy in Kharkiv, Ukraine
2
Department of Chemistry and Integrated Technologies, O.M. Beketov National University of Urban Economy in Kharkiv, Ukraine
3
Department of Chemistry and Integrated Technologies, O.M. Beketov National University of Urban Economy in Kharkiv, Ukraine
4
Department of Chemistry and Integrated Technologies, O.M. Beketov National University of Urban Economy in Kharkiv, Ukraine
5
Department of Chemistry and Integrated Technologies, O.M. Beketov National University of Urban Economy in Kharkiv, Ukraine
6
Department of Chemical Technology of Silicates, Lviv Polytechnic National University, Ukraine

The regulatory framework for radioactive waste management and its peculiarities in crisis situations are analyzed. The perspective directions of creation of high-tech materials for solid-state matrices for radioactive waste immobilization are determined. A methodological approach to the creation of high-strength glass-ceramic materials with high resistance to radiation, chemical, thermal, and mechanical effects has been developed. The choice of glass compositions for obtaining glass-ceramic materials and compositions based on them for the inclusion of radioactive waste in their composition is substantiated. The structure and the influence of phase composition on the functional properties of glass-ceramic materials are investigated. The prospects of using glass-ceramic materials based on anorthite and hydroxyapatite for long-term immobilization of radioactive waste in crisis situations are determined.

[1] Ojovan, M. І.; Yudintsev, S. V. Glass, Ceramic, and Glass- Crystalline Matrices for HLW Immobilization. Open Ceramics 2023, 14, 100355. https://doi.org/10.1016/j.oceram.2023.100355

[2] Hyatt, N. C.; Ojovan, M. I. Special Issue: Materials for Nuclear Waste Immobilization. Materials 2019, 12, 3611. https://doi.org/10.3390/ma12213611

[3] Goel, A.; McCloy, J. S.; Pokorny, R.; Kruger, A. A. Challenges with Vitrification of Hanford High-Level Waste (HLW) to Borosilicate Glass – An Overview. J. Non-Cryst. Solids. 2019, 4, 100033. https://doi.org/10.1016/j.nocx.2019.100033

[4] Tan, P.; Shu, X.; Wen, M.; Li, L.; Lu, Y.; Lu, X.; Chen, S.; Dong, F. Characteristics of Cerium Doped Aluminosilicate Glass as Simulated Radioactive Waste Forms: Effect on Structures and Properties. Prog. Nucl. Energy. 2022, 150, 104299. https://doi.org/10.1016/j.pnucene.2022.104299

[5] Wang, F.; Wang, Y.; Chen, J.; Liao, Q.; Zhu, H.; Zhou, J.; Qu, X.; Gong, Z.; Fu, X.; Zhu, Y. Effect of Cerium Oxide on Phase Composition, Structure, Thermal Stability and Aqueous Durability of Sodium-Iron-Boron-Phosphate Based Glasses. J. Nucl. Mater. 2021, 556, 153199. https://doi.org/10.1016/j.jnucmat.2021.153199

[6] Shapakidze, E.; Avaliani, M.; Nadirashvili, M.; Maisuradze, V.; Gejadze, I.; Petriashvili, T. Synthesis and Study of Properties of Geopolymer Materials Developed Using Local Natural Raw Materials and Industrial Waste. Chem. Chem. Technol. 2023, 17, 711–718. https://doi.org/10.23939/chcht17.04.711

[7] Wang, L.; Liang; T. Review Ceramics for High Level Radioactive Waste Solidification. J. Adv. Ceram. 2012, 1, 194–203. https://doi.org/10.1007/s40145-012-0019-8

[8] Kumar, N.; Aggarwal, N. Ceramics for High-Level Nuclear Waste Immobilization. AIP Conf. Proc. 2023, 2735, 020016. https://doi.org/10.1063/5.0141085

[9] Savvova, O.; Voronov, H.; Fesenko, O.; Riabinin, S.; Tymofieiev, V. High-Strength Glass-Ceramic Material with Low Temperature Formation. Chem. Chem. Technol. 2022, 16, 337–344. https://doi.org/10.23939/chcht16.02.337

[10] Kim, M.; Heo, J. Calcium-Borosilicate Glass-Ceramics Wasteforms to Immobilize Rare-Earth Oxide Wastes from Pyro- Processing. J. Nucl. Mater. 2015, 467, 224–228. https://doi.org/10.1016/j.jnucmat.2015.09.04

[11] Yang, L.; Zhu, Y.; Huo, J.; Cui, Z.; Zhang, X.; Dong, X.; Feng, J. Solubility and Valence Variation of Ce in Low-Alkali Borosilicate Glass and Glass Network Structure Analysis. Materials 2023, 16, 5063. https://doi.org/10.3390/ma16145063

[12] Fabian, M.; Gergely, F.; Osan, J.; Cendak, T.; Kesari, S.; Rao, R. Structural Investigation of Borosilicate Glasses Containing Lanthanide Ions. Sci. Rep. 2020, 10, 7835. https://doi.org/10.1038/s41598-020-64754-2

[13] Yang, J. H.; Park, H.-S.; Cho, Y.-Z. Al2O3-Containing Silver Phosphate Glasses as Hosting Matrices for Radioactive Iodine. J. Nucl. Sci. Technol. 2017, 54, 1330–1337. https://doi.org/10.1080/00223131.2017.1365025

[14] Pilania, R. K.; Dube, C. L. Matrices for Radioactive Waste Immobilization: A Review. Front. Mater. 2023, 10, 1236470. https://doi.org/10.3389/fmats.2023.1236470

[15] McCloy, J.; Goel, A. Glass-Ceramics for Nuclear-Waste Immobilization. MRS Bulletin 2017, 42, 233–240. https://doi.org/10.1557/mrs.2017.8

[16] Fu, L.; Engqvist, H.; Xia, W. Glass-Ceramics in Dentistry: A Review. Materials (Basel) 2020, 26, 1049. https://doi.org/10.3390/ma13051049

[17] Gin, S.; Jollivet, P.; Tribet, M.; Peuget, S.; Schuller, S. Radionuclides Containment in Nuclear Glasses: An Overview(Review). Radiochim. Acta 2017, 105, 927–959. https://doi.org/10.1515/ract-2016-2658

[18] Ojovan, M. I.; Petrov, V. A.; Yudintsev, S. V. Glass Crystalline Materials as Advanced Nuclear Wasteforms. Sustainability 2021, 13, 4117. https://doi.org/10.3390/su13084117

[19] Caurant, D.; Majérus, O. Glasses and Glass-Ceramics for Nuclear Waste Immobilization. In Encyclopedia of Materials: Technical Ceramics and Glasses; Pomeroy, M., Ed.; Elsevier Inc., 2021; pp 762– 778. https://doi.org/10.1016/b978-0-12-818542-1.00090-4

[20] Gabelkov, S. V.; Logvinkov, D. S.; Saenko, S. Yu.; Tarasov, R. V.; Holomeev G. A. Poluchenie steklokeramicheskih i keramicheskih materialov dlya izolyacii radioaktivnyh othodov. Voprosy atomnoj nauki i tehniki 2003, 13, 172–174.

[21] Zhang, X. Y.; Yang, F.; Zhu, S. K.; Chen, X.; Qin, K. M.; Wang, T. S.; Peng, H. B. Influence of Ion Radiation on Leaching Behavior of Borosilicate Glass. J. Non-Cryst. Solids 2023, 602, 122091. https://doi.org/10.1016/j.jnoncrysol.2022.122

[22] Li, H.; Wu, L.; Wang, X.; Xu, D.; Teng, Y.; Li, Y. Crystallization Behavior and Microstructure of Barium Borosilicate Glass-Ceramics. Ceram. Int. 2015, 41, 15202–15207. https://doi.org/10.1016/j.ceramint.2015.08.095

[23] Savvova, O. V.; Voronov, G. K.; Babich, O. V.; Topchiy, V. L.; Fesenko, O. I.; Tymofieiev, V. D. Protective Impact Resistant Composite Materials Based on Aluminium-Silicate Glass-Ceramics. Funct. Mater. 2019, 26, 182–188. https://doi.org/10.15407/FM26.01.182

[24] Savvova, O. V.; Babich, O. V.; Fesenko, O. I.; Topchij, V. L.; Hristich, O. V. Rozrobka visokomicnih anortitovih sitaliv. Voprosy khimii i khimicheskoi tekhnologii 2019, 6, 190–196. https://doi.org/10.32434/0321-4095-2019-127-6-190-196

[25] Sayenko, S. Yu.; Svitlychnyi, Ye. O.; Shkuropatenko, V. A.; Zykova, A. V.; Ledovska, O. G.; Ledovska, L. M.; Kholomyeyev, G. O.; Myronova, A. G.; Odeychuk, M. O. Glass-Ceramic Matrices Based on Borosilicate and Phosphate Materials for the Immobilization of Radioactive Waste. Funct. Mater. 2020, 27, 39– 45. https://doi.org/10.15407/fm27.01.39

[26] Liu, J.; Wang, F.; Liao, Q.; Zhu, H.; Liu, D.; Zhu, Y. Synthesis and Characterization of Phosphate-Based Glass-Ceramics for Nuclear Waste Immobilization: Structure, Thermal Behavior, and Chemical Stability. J. Nucl. Mater. 2019, 513, 251–259. https://doi.org/10.1016/j.jnucmat.2018.11.002

[27] Loiseau, P.; Caurant, D. Glass-Ceramic Nuclear Waste Forms Obtained by Crystallization of SiO2 -Al2O3 -CaO-ZrO2 -TiO2 Glasses Containing Lanthanides (Ce, Nd, Eu, Gd, Yb) and Actinides (Th): Study of the Crystallization from the Surface. J. Nucl. Mater. 2010, 402, 38–54. https://doi.org/10.1016/j.jnucmat.2010.04.0

[28] ASTM C1285-21 Standard Test Methods for Determining Chemical Durability of Nuclear, Hazardous, and Mixed Waste Glasses and Multiphase Glass Ceramics: The Product Consistency Test (PCT) (accessed 2024-08-25).

[29] Savvova, O. V.; Shimon, V. M.; Babich, O. V.; Fesenko, O. I. Development of Calcium Phosphate-Silicate Glass Ceramic Materials Resistant to Biochemical and Mechanical Destruction. Funct. Mater. 2020, 27, 767–773. https://doi.org/10.15407/fm27.04.767

[30] Savvova, O.; Shadrina, G.; Babich, O.; Fesenko, О. Investigation of Surface Free Energy of the Glass Ceramic Coatings on Titanium for Medical Purposes. Chem. Chem. Technol. 2015, 9, 349–354. https://doi.org/10.23939/chcht09.03.349