Synthesis, Identification, and Evaluation of Antibacterial Activity of Some New 4,5-Dihydro-1H-Pyrazoles, Derivatives from Substituted Chalcones

2025;
: pp. 4852 - 494
1
Environmental and Pollution Engineering Department, Technical Engineering College, Kirkuk, Northern Technical University, Iraq
2
Department of Chemistry, College of Sciences, University of Kirkuk, Iraq
3
Department of Chemistry, College of Sciences, University of Kirkuk

In this work, a series of new 4,5-dihydro-1H-pyrazole derivatives (M21-M25) has been synthesized successfully via the reaction of different aldehydes with ketones to produce chalcones, followed by the reaction with hydrazine and phenyl hydrazine. The prepared compounds were identified using FT-IR spectroscopy, 1H NMR spectroscopy, and 13C NMR spectroscopy. The biological activity of these prepared compounds was preliminarily evaluated against certain types of gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli). The results showed a high antibacterial effect towards both types of bacteria at high concentrations.

[1] Kedar, M.; Shirbhate, M.; Chauhan, R.; Sharma, S.; Verma, A. Design Synthesis and Evaluation of Anticancer Pyrazole Derivatives of Chalcone Scaffold. Research Journal of Pharmacy and Technology 2020, 13, 342–346. https://doi.org/10.5958/0974- 360X.2020.00069.4

[2] Schmidt, A.; Dreger, A. Recent Advances in the Chemistry of Pyrazoles. Properties, Biological Activities, and Syntheses. Currr. Org. Chem. 2011, 15, 1423–1463. https://doi.org/10.2174/138527211795378263

[3] Secrieru, A.; O’Neill, P. M.; Cristiano, M. L. S. Revisiting the Structure and Chemistry of 3 (5)-Substituted Pyrazoles. Molecules 2019, 25, 42. https://doi.org/10.3390/molecules25010042

[4] Pechmann H. von .Pyrazol aus Acetylen und Diazomethan. Ber. Dtsch. Chem. Ges. 1898, 31, 2950–2951. https://doi.org/10.1002/cber.18980310363

[5] Alam, M. A. Pyrazole: An Emerging Privileged Scaffold in Drug Discovery. Future Med. Chem. 2023, 15, 2011–2023. https://doi.org/10.4155/fmc-2023-0207

[6] Ameziane El Hassani, I.; Rouzi, K.; Assila, H.; Karrouchi, K.; Ansar, M. h. Recent advances in the synthesis of pyrazole https://doi.org/10.3390/reactions4030029

[7] Hawaiz, F. E.; Samad, M. K. Synthesis and Spectroscopic Characterization of Some New Biological Active Azo–Pyrazoline Derivatives. J. Chem. 2012, 9, 1613–1622. https://doi.org/10.1155/2012/525940

[8] Nitulescu, G. M.; Stancov, G.; Seremet, O. C.; Nitulescu, G.; Mihai, D. P.; Duta-Bratu, C. G.; Barbuceanu, S. F.; Olaru, O. T. The Importance of the Pyrazole Scaffold in the Design of Protein Kinases Inhibitors as Targeted Anticancer Therapies. Molecules 2023, 28, 5359. https://doi.org/10.3390/molecules28145359

[9] Ansari, A.; Ali, A.; Asif, M. Biologically Active Pyrazole Derivatives. New J. Chem. 2017, 41, 16–41. https://doi.org/10.1039/C6NJ03181A

[10] Karrouchi, K.; Mortada, S.; Issaoui, N.; El-guourrami, O.; Arshad, S.; Bouatia, M.; Sagaama, A.; Benzeid, H.; El Karbane, M.; Faouzi, M. E. A. Synthesis, Crystal Structure, Spectroscopic, Antidiabetic, Antioxidant and Computational Investigations of Ethyl 5-Hydroxy-1-isonicotinoyl-3-methyl-4, 5-dihydro-1H- pyrazole-5-carboxylate. J. Mol. Struct. 2022, 1251, 131977. https://doi.org/10.1016/j.molstruc.2021.131977

[11] Ebenezer, O.; Shapi, M.; Tuszynski, J. A. A Review of the Recent Development in the Synthesis and Biological Evaluations of Pyrazole Derivatives. Biomedicines 2022, 10, 1124. https://doi.org/10.3390/biomedicines10051124

[12] Karrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y. N.; Al-Aizari, F. A.; Ansar, M. h. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 2018, 23, 134. https://doi.org/10.3390/molecules23010134

[13] Bennani, F. E.; Doudach, L.; Cherrah, Y.; Ramli, Y.; Karrouchi, K.; Faouzi, M. E. A. Overview of Recent Developments of Pyrazole Derivatives as an Anticancer Agent in Different Cell Line. Bioorg. Chem. 2020, 97, 103470. https://doi.org/10.1016/j.bioorg.2019.103470

[14] Lusardi, M.; Spallarossa, A.; Brullo, C. Amino-Pyrazoles in Medicinal Chemistry: A Review. Int. J. Mol. Sci. 2023, 24, 7834. https://doi.org/10.3390/ijms24097834

[15] Zhao, Z.; Dai, X.; Li, C.; Wang, X.; Tian, J.; Feng, Y.; Xie, J.; Ma, C.; Nie, Z.; Fan, P. Pyrazolone Structural Motif in Medicinal Chemistry: Retrospect and Prospect. Eur. J. Med. Chem. 2020, 186, 111893. https://doi.org/10.1016/j.ejmech.2019.111893

[16] Lai, P.-M.; Ha, S.-T. Synthesis of Heterocyclic Pyridine- Based Chalcones with Dimeric Structure. Chem. Chem. Technol. 2022, 16, 1-6. https://doi.org/10.23939/chcht16.01.001

[17] Jasim, S. S.; Abdulwahid, J. H.; Beebany, S.; Mohammed, B. Synthesis, Identification, and Antibacterial Effect Assessment of Some New 1, 4-Thiazepines, Derived from Substituted Diphenyl Acrylamides and Diphenyl Dienones. Chem. Methodol. 2023, 7, 509–523. https://doi.org/10.22034/chemm.2023.392659.1668

 [18] Beebany, S.; Jasim, S. S.; Al-Tufah, M. M.; Arslan, S. Preparation and Identification of New 1, 4-bis (5, 3-Substituted-2, 3-dihydro-1H-pyrazole-1-yl) buta-1, 4-dione Derivatives with their Antibacterial Effect Evaluation. Chem. Methodol. 2023, 7, 123–136. https://doi.org/10.22034/chemm.2023.365060.1614

 [19] Reller, L. B.; Weinstein, M.; Jorgensen, J. H.; Ferraro, M. J. Antimicrobial Susceptibility Testing: A Review of General Principles and Contemporary Practices. Clin. Infect. Dis. 2009, 49, 1749–1755. https://doi.org/10.1086/647952

[20] Bonev, B.; Hooper, J.; Parisot, J. Principles of Assessing Bacterial Susceptibility to Antibiotics Using the Agar Diffusion Method. J. Antimicrob. Chemother. 2008, 61, 1295–1301. https://doi.org/10.1093/jac/dkn090

[21] Al-Saheb, R.; Makharza, S.; Al-Battah, F.; Abu-El-Halawa, R.; Kaimari, T.; Abu Abed, O. S. Synthesis of New Pyrazolone and Pyrazole-Based Adamantyl Chalcones and Antimicrobial Activity. Biosci. Rep. 2020, 40, BSR20201950. https://doi.org/10.1042/BSR20201950

[22] Deska, A.; Zulhadjri, Z.; Norita O.; Efdi, M. Clay Enriched with Ca2+ and Cu2+ As the Catalyst for the Production of Methyl Esters from CPO on a Laboratory Scale. Chem. Chem. Technol. 2022, 16, 678–683. https://doi.org/10.23939/chcht16.04.678

[23] Mhaibes, R. M. Antimicrobial and Antioxidant Activity of Heterocyclic Compounds Derived from New Chalcones. J. Med. Chem. Sci. 2023, 6, 931–937. https://doi.org/10.26655/jmchemsci.2023.4.25

[24] Salum, K. A.; Alidmat, M. M.; Khairulddean, M.; Kamal, N. N. S. N. M.; Muhammad, M. Design, Synthesis, Characterization, and Cytotoxicity Activity Evaluation of Mono-Chalcones and New Pyrazolines Derivatives. J. Appl. Pharm Sci. 2020, 10, 020– 036. https://doi.org/10.7324/japs.2020.10803

[25] Pola, S.; Banoth, K. K.; Sankaranarayanan, M.; Ummani, R.; Garlapati, A. Design, Synthesis, in Silico Studies, and Evaluation of Novel Chalcones and their Pyrazoline Derivatives for Antibacterial and Antitubercular Activities. Med. Chem. Res. 2020, 29, 1819–1835.  https://doi.org/10.1007/s00044-020-02602-8