Remote Monitoring System for Microclimate Parameters of Smart Home and Industrial Premises Based on ESP8266 Microcontroller

2025;
: pp. 199 – 209
Received: October 15, 2025
Revised: November 25, 2025
Accepted: December 18, 2025
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University

The paper analyzes developments in the field of environmental parameter monitoring using microcontrollers and Internet of Things technologies, with results that justify the use of ESP8266 microcontroller. A monitoring system for microclimate parameters (temperature, humidity and atmospheric air pressure) in smart homes and industrial  premises based on ESP8266 microcontroller has been developed, which demonstrated its effectiveness through a combination of hardware and software tools. The integration of BMP280 and AHT10 sensors ensured the accurate measurement of temperature, humidity and atmospheric air pressure. The asynchronous web server integrated into the ESP8266 allows for displaying the results as interactive, real-time graphs. In the developed system, users access data directly from the local network, ensuring functionality even without Internet access. Furthermore, the cost of the hardware (ESP8266 controller, BMP280 and AHT10 sensors) remains minimal, making the system accessible for widespread use. The implementation of a user notification system via WhatsApp Messenger using CallMeBot service became an important addition, allowing for the prompt notification of users about exceeding parameter limit values, even without logging into the web application. This approach increases the level of automation, convenience and reliability of microclimate control, making the system suitable for a wide range of tasks in domestic and industrial applications.

  1. Shaleva Volodymyr, Matiko Fedir, Krykh Hanna. (2021). Algorithm for operating the system of monitoring the technological process parameters using mobile communication networksSelected issues of electrical engineering and electronics : 16th International conference, Rzeszów 13-15 September, 2021. – p. 1–4.
  2. Shaleva V., Matiko F., Krykh H., Roman V. (2022). Smart system for monitoring technological process parameters and energy equipment protection. 2022 IEEE 8th International Conference on Energy Smart Systems (ESS) : proceedings (Kyiv, 12–14 October 2022). – p. 216–220.
  3. Aashiq, M.N.M.; Kurera, W.T.C.C.; Thilekaratne, M.G.S.P.; Saja, A.M.A.; Rouzin, M.R.M.; Neranjan, N.; Yassin, H. (2023). An IoT-Based Handheld Environmental and Air Quality Monitoring Station. Acta IMEKO 2023, 12, 1–9.
  4. Gueye A, Drame M.S., Niang S.A.A. (2024). A low-cost IoT-based real-time pollution monitoring system using ESP8266 NodeMCU. Measurement and Control. 58(10):1337-1345. doi:10.1177/00202940241306690
  5. Huang, Y., Zhao, Q., Zhou, Q., Wanchang, J. (2018). Air Quality Forecast Monitoring and Its Impact on Brain Health based on Big Data and Internet of Things. IEEE Access. PP. 1-1. 10.1109/ACCESS.2018.2885142.
  6. Al-Okby, M. F. R., Junginger, S., Roddelkopf, T., Huang, J., Thurow, K. (2024). Ambient Monitoring Portable Sensor Node for Robot-Based Applications. Sensors, 24(4), 1295. https://doi.org/10.3390/s24041295
  7. Anjali, D. G., Sukhada, S. (2022). IoT Based Environmental Monitoring System for Smart City. Proceedings of the 2022 International Conference on Smart Technologies in Computing, Electrical, and Electronics. IEEE. pp. 175-180.
  8. Dhananjay, K. B., Sandeep, K. S. (2020). IoT-Based Smart Environmental Monitoring System: Design and Implementation. Proceedings of the 2020 International Conference on Communication and Electronics Systems (ICCES). IEEE. pp. 23-27.
  9. Gupta, H., Kumar, S. (2019). Environmental Monitoring System Using IoT. International Journal of Computer Applications, 975, 8887. https://doi.org/10.5120/ijca2019918820
  10. Patil, M. S., Deshmukh, S. P. (2018). Smart Environmental Monitoring System Using IoT. International Journal of Science and Research, 7(2), 113-117. https://www.ijsr.net/archive/v7i2/ART20192563.pdf
  11. Shah, A. M., Memon, S. (2020). Design of a Smart Environmental Monitoring System Using IoT. International Journal of Computer Applications, 975, 8887. https://doi.org/10.5120/ijca2020910665
  12. BMP280 - Ultra-Low Power Sensor for Barometric Pressure and Temperature. https://www.bosch-sensortec.com/media/boschsensortec/downloads/product_flyer/bst-bmp280-fl000.pdf
  13. S. Zafar, G. Miraj, R. Baloch, D. Murtaza, K. Arshad. (2018). An IoT Based Real-Time Environmental Monitoring System Using Arduino and Cloud Service. Eng. Technol. Appl. Sci. Res., vol. 8, no. 4, Aug. 2018, pp. 3238–3242.
  14. Manisalidis, I., Stavropoulou, E., Stavropoulos, A., Bezirtzoglou, E. (2020). Environmental and Health Impacts of Air Pollution: A Review. Frontiers in public health8, 14. https://doi.org/10.3389/fpubh.2020.00014
  15. J. Jo, B. Jo, J. Kim, S. Kim, W. Han. (2020). Development of an IoT-Based Indoor Air Quality Monitoring Platform. J. Sens., vol. 2020, 1-14. 10.1155/2020/8749764.
  16. A. Kulkarni, D. Mukhopadhyay. (2018). Internet of Things Based Weather Forecast Monitoring System. Indones. J. Electr. Eng. Comput. Sci., vol. 9, no. 3, pp. 555–557.
  17. N. A. Zakaria, Z. Zainal, N. Harum, L. Chen, N. Saleh, F. Azni. (2018). Wireless Internet of Things-Based Air Quality Device for Smart Pollution Monitoring. Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 11, pp. 65–69
  18. Gryech, I., Ben-Aboud, Y., Guermah, B., Sbihi, N., Ghogho, M., Kobbane, A. (2020). MoreAir: A Low-Cost Urban Air Pollution Monitoring System. Sensors, 20(4), 998. https://doi.org/10.3390/s20040998
  19. Carlos-Mancilla, M. A., Luque-Vega, L. F., Guerrero-Osuna, H. A., Ornelas-Vargas, G., Aguilar-Molina, Y., González-Jiménez, L. E. (2021). Educational Mechatronics and Internet of Things: A Case Study on Dynamic Systems Using MEIoT Weather Station. Sensors, 21(1), 181. https://doi.org/10.3390/s21010181
  20. Santos R. (2024) Getting Started with ESP8266 NodeMCU Development Board. Random Nerd Tutorials. https://randomnerdtutorials.com/projects-esp8266/.
  21. Patnaikuni D. (2017). A comparative study of Arduino, Raspberry Pi and ESP8266 as IoT development board. Int. J. Adv. Res. Comput. Sci.; 8(9): 2350–2352. https://doi.org/10.26483/ijarcs.v8i5.3959