Numerical simulation of the sliding friction factor in thrusting

1
Ivan Franko National University of Lviv
2
Ivan Franko National University of Lviv
3
Ivan Franko National University of Lviv

We investigate a role of the contact friction in thrusting within the framework of the critical taper theory and according to geological settings for orogenic belts including the Ukrainian Carpathians (in Early Cretaceous time). Finite element models are used to simulate tectonic compression of sedimentary rocks by submerged stage and take into account frictional slipping on the detachment horizon. We assume a simple wedge geometry (rectangular layer 60 km long, 1.5 km thick and 2.5 km deep), plane strain state, quasistatic process and use elastic constitutive relation. Mechanical loads include gravity, water pressure on top and lateral displacement (up to 0.5 km) from the left, whereas the right side is fixed. Numerical results show specific features of the inhomogeneous stress fields for small (0.01-0.5), middle (0.5-0.64), large (0.64—0.8) and overlarge (0.8-1.15) friction coefficients. The magnitude of the tangential contact stress controls the front between sliding and sticking zones. Stress trajectories enable to predict thrust structures using Mohr-Coulomb failure criterion.

1. Jaroshevskij V. Tektonika razryvov i skladok: Per. s pol'sk. - M.: Nedra, 1981. - 245 s.
2. Tsrkot D., Shubert Dzh. Geodinamika: Geologicheskie prilozhenija fiziki splosh­nyh sred. Ch. 2: Per. s angl. - M.: Mir, 1985. -360 s.
3. Ramsay J.G., Lisle R.G.. The techniques of modem structural geology. Volume 3. Applica­tions of continuum mechanics in structural geology. - Elsevier. - 2000. - P. 701-1061.
4. Shejdegger A. Osnovy geodinamiki: Per. s angl. - M.: Nedra, 1987. - 384 s.
5. Nemchok М., Schamel S., Gayer R. Thrustbelts. Structural architecture, thermal regime and petroleum systems. - Cambridge University Press, 2005. - 541 p.
https://doi.org/10.1017/CBO9780511584244
6. Strayer L.M., Hudleston P.J., Lorib L.J. A numerical model of deformation and fluid-flow in an evolving thrust wedge // Tectonophysics. -2001.-Vol. 335.-P. 121-145.
https://doi.org/10.1016/S0040-1951(01)00052-X
7. Wissing S.B., Ellis S., Pfiffner O.A. Numerical models of Alpine-type cover nappes // Tectonophysics. - 2003. - Vol. 367. - P. 145-172.
https://doi.org/10.1016/S0040-1951(03)00097-0
8. Byzova S. L., Maslakova N. I., Rudakov S. G. O skladchatosti i nadvigah melovogo vozra­sta v Vostochnyh Karpatah // Geotektonika. - 1983.-№ 2.-S. 71-7.
9. Hnylko O.M. Pro heodynamichni umovy formu­vannia barem-albskykh vidkladiv Ukrain­skykh Karpat // Heolohiia i heokhimiia horiuchykh kopalyn. - 1996. - №3-4 (96-97). - S. 52-60.
10. Zenkevych O. Metod konechnыkh эlementov v tekhnyke: Per. s anhl. - M.: Myr, 1975. - 541 s.
11. Marchuk M.V., Khomiak M.M. Zmishana skhema metodu skinchennykh elementiv dlia rozrakhun­ku sharuvatykh kompozytnykh obolonok i plastyn. - Lviv: ІPPMM NAN Ukrainy. - 2003.-216 s.
12. Gintov O.B. Polevaja tektonofizika i ee primenenie pri izuchenii deformacij zem­noj kory. - Kiev: "Feniks", 2005. - 572 s.
13. Fizicheskie svojstva mineralov i gornyh porod pri vysokih termodinamicheskih parametrah: Spravochnik / E.I.Bajuk i dr.; Pod red. M.P. Volarovicha. - M.: Nedra, 1988.-255 s