Prospects of nuclear-physical methods for the distinction of gas-saturated reservoir rocks in complicated neogene sediments

2016;
: pp. 134 – 143
https://doi.org/10.23939/jgd2016.02.134
Received: September 30, 2016
1
Ivano-Frankivsk national technical university of oil and gas
2
Ivano-Frankivsk national technical university of oil and gas
3
Ivano-Frankivsk national technical university of oil and gas
4
Ivano-Frankivsk national technical university of oil and gas
5
Ivano-Frankivsk national technical university of oil and gas

Purpose. The purpose of this work is to establish features of geological structure of complicated reservoir rocks, creation the petrophysics interpretation basics of integrated geophysical research for the results of the introduction of new, informative, and nuclear methods. Methodology. The methodology of the research is to determine the distribution of radioactive isotopes of U (Ra), Th, K40 in the rocks-reservoirs of the Neogene deposits of gas condensate fields in the Bilche-Volisk zone of the Pre-Carpathian depression for lithological division of thin cross sections and to estimate the character and nature of the isotope increased radioactivity. Results. As a result of these geophysical methods, petrography and gamma spectrometry on core samples, taken from the Neogene sediments, the following has been set: thresholds of intensity gamma fields for productive reservoir rocks was found, net-to-gross ratio of the Sarmatian and Helvetian stage was calculated; efficiency of gamma spectral method for the assessment of natural radioactivity was justified, petrophysical interrelation and correlation diagram of gas saturation distribution for the Lower Dashavsk series of Sarmatian stage were built. Originality. It is developed a methodology for estimating the nature of the increased radioactivity of the Neogene deposits of gas condensate fields in Bilche-Volisk zone of the pre-Carpathian depression, the essence of methodology is follows: concentrated ratio of uranium, thorium and potassium in the composition of rock is calculated for rocks of the Neogene sediments characterized by increased radioactivity. This takes into account the fact that the quantity of potassium content in the rock is caused by the shaliness volume and organic matter. Given the fact that the content of radioactive potassium in the sediments of the geological section of the Neogene system are unevenly distributed in the Helvetica, Badenian and Sarmatian stages, we calculated ratios of uranium plus thorium to potassium for each of these layers (factor A). Practical significance. An advanced technique of processing for gamma logging results and the efficiency of integrated geophysical studies of complex geological sections is presented. The examples of using the results of nuclear-physical methods allows to identify productive gas-saturated horizons. Study results allows to substantiate mineralogical structure of the rock-reservoir matrix and set boundary values of residual water saturation ratios.

1. Krupskyi Y. Z. Geody`namichni umovy` formuvannya i naftogazonosnist` Karpats`kogo ta Voly`no-Podil`s`kogo regioniv Ukrayiny` [Geodynamic conditions of formation and oil and gas content in Carpathian and Volyno-Podilsk regions of Ukraine]. Кyiv, UkrDGRІ, 2001, 144 p.

2. Ellanskyi M. M. Petrofizicheskie osnovy kompleksnoj interpretacii dannyh geofizicheskih issledovanij skvazhin [Petrophysical basis of complex interpretation well logging data]. Edition GERS, 2001, 229 p.
3. Fedoryshyn D. D., Trubenko A. N., Fedoryshyn S. D. Vydelenija nizkoomnyh gazonosnyh porod-kollektorov neogenovyh otlozhenij Karpatskoj neftegazonosnoj provincii po dannym geofizicheskih issledovanij skvazhin [Determine the low-resistance gas-bearing reservoir rocks in Neogene deposits of the Carpathian oil and gas province according to well logging] Karotazhnik – Karotazhnyk, 2013, no. 7(229), pp.19–30.
4. Fedoryshyn D. D., Karpenko O. M. Statystychna model' tonkosharuvatoho rozrizu sverdlovyny za danymy HDS [The statistical model of thin-layered well section according to well logging]. Rozvidka ta rozrobka naftovy`x i gazovy`x rodovy`shh – Exploration and development of oil and gas fields, 2003, no. 2(7), pp. 44–49.
5. Fedoryshyn D. D., Prokopiv V. I. Ocinka geologo-geofizy`chny`x neodnoridnostej pry` doslidzhennyax skladnopobudovany`x porid-kolektoriv [Evaluation of geological and geophysical irregularities at studying reservoir rock with the complicated structure]. Rozvidka ta rozrobka naftovy`x i gazovy`x rodovy`shh – Exploration and development of oil and gas fields, 2003, no. 2(7), pp. 28–34.
6. Fedyshyn V. O., Bagniyk M. M., Fedoryshyn D. D. Fil`tracijni efekty` u ny`z`kopory`sty`x kolektorax [Filtration effects in low porous reservoirs] Rozvidka ta rozrobka naftovy`x i gazovy`x rodovy`shh – Exploration and development of oil and gas fields, 2002, no. 2(3), pp. 28–31.
7. Fedoryshyn D. D., Fedyshyn V. O., Fedoriv V. V. Novi dani pro radioakty`vnist` sarmats`ky`x vidkladiv gazovy`x rodovy`shh Bil`che-Voly`cz`koyi zony`[New data on radioactivity Sarmatian deposits at gas fields in Bilche-Volytska zone] Geologiya i geoximiya goryuchy`x kopaly`n – Geology and Geochemistry of Combustible Minerals, 2002. no. 4, pp.71–76.
8. Fedoryshyn D. D. Osobly`vosti zastosuvannya INNK v umovax ny`z`koyi mineralizaciyi plastovy`x vod na pry`kladi sarmats`ky`x vidkladiv Bil`che-Voly`cz`koyi zony` [Features of use INNL in low mineralization formation water on the example of the Sarmatian deposits Bilche-Volytska zone]. Rozvidka ta rozrobka naftovy`x i gazovy`x rodovy`shh. [Exploration and development of oil and gas fields], 2008, no. 1(26), P. 30–37.
9. Fedoryshyn D. D., Piatkovska I. O. Kompleksna interpretaciya rezul`tativ impul`snogo nejtron-nejtronnogo karotazhu ta parametriv matematy`chnoyi staty`sty`ky` dlya pidvy`shhennya vy`dobutku gazu iz porid-kolektoriv tonkosharuvaty`x neogenovy`x vidkladiv [Comprehensive interpretation of pulsed neutron-neutron logging and parameters of mathematical statistics to improve the extraction gas from thin reservoir rocks of Neogene]. Naftogazova energety`ka – Oil and gas energy, 2012, no. 2(18). P. 7–15.

10. Fedak I. O., Starostin V. А. Vykorystannya yaderno-fizychnyx metodiv doslidzhen` sverdlovyn dlya ocinky mikrotrishhynuvatosti kolektoriv karbonatnogo typu [The use of nuclear-physical methods of research wells for evaluation micro fractured in carbonate type of reservoir]. Naukovyj visnyk . Scientific Journal, 2007, no. 2(16), P. 16–23.

11. Fedoryshyn D. D. Teoretyko-eksperymental'ni osnovy petrofizychnoyi ta heofizychnoyi diahnostyky tonkoprosharkovykh porid-kolektoriv nafty i hazu (na prykladi Karpat·s'koyi naftohazonosnoyi provintsiyi): Diss. dokt. geol. nauk [Theoretical and experimental bases of petrophysical and geophysical diagnostics tonkoprosharkovyh species of oil and gas (for example, Carpathian oil and gas province). Dr. geol. sci. diss.] Lviv., 1999, 289 p.
12. Larionov V. V. Radiometrija skvazhin [Radiometry wells]. Moscow, Nedra, 1969, 326 p.
13. Fedoryshyn D. D., Moroshan R. P., Piatkovska I. O. Method of rapid data interpretation geophysical borehole logging involving large-scale effects of higher order in thinlayers sarmatian deposits of the carpathion foredeep. Scientific bulletin of north university of Baia Mare, 2012 vol. XXVI, no. 2, P. 85–91.
14. Fedoryshyn D. D., Trubenko O. M., Fedoryshyn S. D., Gromiak O. A., Piatkovska I. O. Method of determining the coefficient of residual water saturation in polymictic sandstones (an example of Dnieper-Donets basin fields). Scientific bulletin of north university centre of Baia Mare, 2014, vol. 28, no. 1, P. 51–59.
15. Coates G. R., Lizhi Xiao, Prammer M. G. NMR Logging Principles and Applications. Houston: Halliburton Energy Services, 1999. 235 p.
16. Dunn K.-J., Bergman D. J., LaTorraca G. A. Nuclear Magnetic Resonance. Petrophysical and Logging Applications. New York: Pergamon, 2002, P. 94.