Theory of continental drift – causes of the motion. Outline of the theory
Received: April 30, 2023
Institute of Rock Structure and Mechanics of the Academy of Sciences of the Czech Republic
Anect Praha
Silesian University Opava
Czech Technical University
Nad Palatou Praha

The theory of mantle convection currents as the cause of lithospheric plate movements has several major problems, including the absence of an adequate energy source. As shown in our previous contribution, an unbiased interpretation of geochemical data does not support the assumptions of a significant amount of radionuclides in the lower mantle or even in the core. It is our assertion that solar radiation is the primary energy source in the lithosphere. This energy is converted into mechanical energy via thermoelastic waves, even in depths with minimal temperature fluctuations. This has been confirmed by various methods of continuous stress measurement. The periodic and quasiperiodic thermoelastic reversible deformations, such as the circadian and annual cycles (including tidal periods), can also cause irreversible deformations due to the ratcheting mechanism.  The 2D model showed that the strength limit is exceeded in 0.3 % of all diurnal cycles during the year. As a consequence, continents tend to extend while the oceanic lithosphere is pushed and overthrusted between continents. The middle-ocean ridges, similar to continental rifts, are filled by ascending magma which is one example of the ratcheting mechanism. The final plate movements are determined by the distribution of major continents and the overall westward drift of the lithosphere, which is slower for deep-rooted plates like the Indian one. Large asteroid impacts are important triggers (and possibly significant energy sources) of discrete events, like the formation of hotspots and large igneous provinces.

  1. Anderson, D. L. (2000). The thermal state of the upper mantle; No role for mantle plumes, Geophysical Research Letters, 27(22), 3623-3626.
  2. Berger, J. (1975). A note on thermoelastic strains and tilts, Journal of Geophysical Research, 80(2), 274-277.
  3. Boslough, M. B., Chael, E. P., Trucano, T. G., Crawford, D. A., & Campbell, D. L., (1996). Axial focusing of impact energy in the Earth’s interior: A possible link to flood basalts and hotspots, in Ryder, G., Fastovsky, D., Gartner, S., eds., The Cretaceous-Tertiary event and other catastrophes in Earth history: Geological Society of America Special Paper, 307, 541–550.
  4. Brimich, L. (2006). Strain measurements at the Vyhne tidal station. Contributions to geophysics and geodesy, 36(4), 361-371.
  5. Brown, P., Spalding, R.E., ReVelle, D.O., Tagliaferri, E., & Worden S. P. (2002). The flux of small near-Earth object colliding with the Earth. Nature, 420(6913), 294-296.
  6. Carcaterra, A., & Doglioni, C. (2018). The westward drift of the lithosphere: A tidal ratchet? Geoscience Frontiers, 9(2), 403-414.
  7. Carlson, R. W. (ed.), (2003). Treatise on Geoche­mistry – 2. The Mantle and Core. Elsevier, 608 pp.
  8. Chlupáč, I., Brzobohatý R., Kovanda J., Stráník Z. (2002). Geologická minulost České republiky. Academia, Praha, 436 pp. Geological past of the Czech Republic (in Czech).
  9. Crespi, M., Cuffaro, M., Doglioni, C., Giannone, F., & Riguzzi, F. (2007). Space geodesy validation of the global lithospheric flow. Geophysical Journal International, 168(2), 491-506.
  10. Croll, J. G. A. (1997). A simplified model of upheaval thermal buckling of subsea pipelines. Thin-walled Structures, 29, 59-78.
  11. Croll, J. G. (2006). From asphalt to the Arctic: new insights into thermo-mechanical ratchetting processes. In III European Conference on Computational Mechanics: Solids, Structures and Coupled Problems in Engineering: Book of Abstracts (pp. 177-177). Dordrecht: Springer Netherlands.
  12. Croll, J. G. A. (2007a). Mechanics and thermal ratchet uplift buckling in periglacial morphologies. Structural Engineering, Mechanics and Compu­tation. Vol. 3. A. Zingoni (ed.). 833-837.
  13. Croll, J. G. A. (2007b). A new hypothesis for Earth lithosphere evolution, New Concepts in Global tectonics, Newsletter, 45, December 34-51.
  14. Croll, J. G. A. (2008). Thermally induced pulsatile motion of solids. Proc. Of the Royal Society a Mathematical, Physical and Engeneering Sciences. 25 November 2008.
  15. Croll, J. G. (2009). Possible role of thermal ratche­tting in alligator cracking of asphalt pavements. International Journal of Pavement Engineering, 10(6), 447-453.
  16. Croll, J.G.A. (2019). Phanerozoic climate and vertical tectonic cycles. UCL Press. P. 1-7.
  17. Čermák, V., Šafanda, J., Krešl, M., Dědeček, P. and Bodri, L. (2000). Recent climate warming: surface air temperature series and geothermal evidence. Studia geophysica et geodaetica, 44, 430-441.
  18. Doglioni, C. (1993). Geological evidence for a global tectonic polarity. Journal of the Geological Society, 150(5), 991-1002.
  19. Doglioni, C. (2014). Asymmetric Earth: mechanisms of plate tectonics and earthquakes. Rendiconti Accademia Nazionale delle Scienze detta dei XL, Memorie di Scienze Fisiche e Naturali, 9–27,
  20. Ernst, R. E. (2014). Large igneous provinces. Cam­bridge Univ. Press, 653 pp.,+653+pp&ots=KjHO2eCjZr&sig=GkmWUwqOrM41y8CeoJvNdIHpBoI&redir_esc=y#v=onepage&q&f=false
  21. Fischer, T., Kalenda, P., & Skalský, L. (2006). Weak tidal correlation of NW-Bohemia/Vogtland earth­quake swarms. Tectonophysics, 424(3-4), 259-269.
  22. Frydrýšek, K., Wandrol, I., Kalenda, P. (2012). Report about the probabilistic approaches applied in mechanics of continental plates. The 14th WSEAS International Conference on Mathe­matical Methods, Computational Techniques And Intelligent Systems (MAMECTIS '12), Porto, Portugal, July 1-3, 2012. Mathematical Models and Methods in Modern Science. 146-149. ISBN: 978-1-61804-106-7.
  23. Gonnermann, H. M., & Mukhopadhyay, S. (2009). Preserving noble gases in a convecting mantle. Nature, 459(7246), 560-563.
  24. Gordienko, V. V. (2018). About the movements of lithosperic plates in oceans and in transition zones. Geophysical Journal, 3(40) (in Russian).
  25. Gordienko, V. V. (2019). About the Earth´s dega­sation. Geophysical Journal, 3, 41, (in Russian).
  26. Heaton, T.H. (1975). Tidal Triggering of Earthquakes. Geophysical Journal International, 43(2), 307–326. tb00637.x.
  27. Holub, K., Kalenda, P. and Rušajová, J. (2013). Mu­tual coupling between meteorological parameters and secondary microseisms. Terrestrial, Atmo­spheric & Oceanic Sciences, 24(6).
  28. Weihang Huang, Wen-Bin Shen, Wenqiang Zhang, Xiang Gu, Tianxing Jiang (2016). Statistics Analysis of Anomalous Signals Prior to Large Earthquakes. International Journal of New Technology and Research, 2(2), 263599.
  29. Hvoždara, M., & Brimich, L. (1988). Thermo-elastic deformations due to the annual temperature variation at the tidal station in Vyhne. Studia Geophysica et Geodaetica32(2), 129-135. 10.1007/BF01637575.
  30. Jones, A. P. (2005). Meteorite impacts as triggers to large igneous provinces. Elements, 1(5), 277-281.
  31. Kalenda, P., Neumann, L., Málek, J., Skalský, L., Procházka, V., Ostřihanský, L., Kopf, T., & Wan­drol, I. (2012). Tilts, global tectonics and earth­quake prediction. SWB, London, 247 pp.
  32. Kalenda, P., Wandrol, I., Holub, K., & Rušajová, J. (2015). The possible explanation for secondary microseisms seasonal and annual variations. Terr. Atmos. Ocean. Sci, 26(2), 103-109.
  33. Kalenda, P., Wandrol, I., Frydrýšek, K., & Kremlík, V. (2018). Calculation of solar energy, accu­mulated in the continental rocks. NCGT journal, 6(3).
  34. Keith, M. L. (1993). Geodynamics and mantle flow: an alternative earth model. Earth-Science Reviews, 33(3-4), 153-337.
  35. Klomínský J. (ed., 2008). Studium dynamiky puk­linové sítě granitoidů ve vodárenském tunelu Bedřichov v Jizerských horách – Etapa 2006-2008. MS ČGS (zpráva pro SÚRAO), 188 pp. / Study of dynamics of the fracture network in granitoids of the waterworks tunel Bedřichov in Jizerské Hory Mts. MS Czech Geological Service, report for SÚRAO for the years 2006-2008 (in Czech).
  36. Latypov, Rais & Chistyakova, Sofia & Grieve, Richard & Huhma, Hannu. (2019). Evidence for igneous differentiation in Sudbury Igneous Com­plex and impact-driven evolution of terrestrial planet proto-crusts. Nature Communications.
  37. Mann, M. E., Zhang, Z., Hughes, M. K., Bradley, R. S., Miller, S. K., Rutherford, S., & Ni, F. (2008). Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proceedings of the National Academy of Sciences, 105(36), 13252-13257.
  38. Mareš, S. a kol. (1990). Úvod do užité geofyziky. Introduction to the applied geophysics (in Czech). SNTL Praha.
  39. Ostřihanský, L. (1997). The causes of lithospheric plates movement. Charles University, Prague, 1-63.
  40. Pail, R. (2019). GOCE gravity models. Institute of Astronomical and Physical Geodesy. TU München.
  41. Procházka V., Žáček M., Matějka D. (2014). Kon­taminace zvětralého melechovského granitu. – Zpravy o geologickych vyzkumech, 134-139. Contamination of weathered Melechov granite. Geoscience Research Reports 47, 134–139 (in Czech).
  42. Procházka V., Zachariáš J., & Strnad L. (2018). Model ages of fracture fillings and mineralogical and geochemical evidence for water-rock interaction in fractures in granite: The Melechov Massif, Czech Republic. Applied Geochemistry, 95, 124-138.
  43. Qian, Fuye, Zhao, Biru, Qian, W., Zhao, J., He S.-G., Zhang, H.-K., Li S.-Y., Li, S.-K.,Yan, G.-L., Wang Ch.-M., Sun Z.-K., Zhang, D.-N., Lu J., Zhang, P., Yang, G.-J., Sun J.-L., Guo Ch.-S., Tang Y.-X., Xu J.-M., Xia K.-T., Ju, H., Yin, B.-H., Li M., Yang, D.-S., Qi W.-L., He, T.-M., Guan, H.-P. & Zhao, Y.-L. (2009). Impending HRT wave precursors to the Wenchuan Ms 8.0 earthquake and methods of earthquake impending prediction by using HRT wave.  Science in China Series D: Earth Sciences, 52, 1572-1584. 10.1007/s11430-009-0124-x
  44. Rogers, G., & Dragert, H. (2003). Episodic tremor and slip on the Cascadia subduction zone: The chatter of silent slip. Science, 300(5627), 1942-1943.
  45. Schmidt, A., Fristad, K., & Elkins-Tanton, L. (eds., 2015). Volcanism and Global Environmental Change. – Cambridge University Press, 324 pp
  46. Scoppola, B., Boccaletti, D., Bevis, M., Carminati, E., & Doglioni, C. (2006). The westward drift of the lithosphere: A rotational drag? Geological Society of America Bulletin, 118(1-2), 199-209.
  47. Singh, R.P.; Zlotnicki, J.; Prasad, A.K.; Gautam, R.; Hattori, K.; Liu, J.; Parrot, M.; Li, F. & Kafatos, M. (2008). Precursory Signals Using Satellite and Ground data Associated with the Wenchuan Earthquake of May 12, 2008. American Geophysical Union, Fall Meeting Abstracts (Vol. 2008, pp. U22B-06).
  48. Smith, K. (2002). Environmental Hazards: Assesing Risk and Reducing Disaster. Routledge, London, 392 p. ISBN 0-415-22463-2.,+Lond%C3%BDn,+2002.+392+s.+ISBN+0-415-22463-2&ots=CVRFtAZ99X&sig=S9CNwRo MVl_CDF38rhCEWL0qX20&redir_esc=y#v=onepage&q&f=false.
  49. Solanki, S. K., Usoskin, I. G., Kromer, B., Schüssler, M. and Beer, J. (2004). “Unusual activity of the Sun during recent decades compared to the previous 11,000 years”, Nature, 431, 1084–1087.
  50. Tsoulis, D., Ieronimaki, Z., Kalampoukas, G., Papa­nikolaou, D., Papanikolaou, T., Patlakis, K., & Vassiliadis, I. (2011). Spectral analysis and interpration of current satellite-only Earth gravity models by incorporating global terrain and crustal data.
  51. Wandrol, I., Frydrýšek, K., & Kalenda, P., (2012). SBRA Method Applied in modelling the Behaviour of Lithosphere of the Earth, XII. konference Spolehlivost konstrukcí 2012, , Praha 25.5. 2012.
  52. Wandrol, I. (2017).  Modelování mechanického cho­vání zemské kůry. Disertační práce, VŠB-TU Ostrava, 2017. Modelling of mechanical behavior of the Earth's crust. PhD. thesis, VSB-Technical University of Ostrava.