Theory of continental drift – causes of the motion. Historical review and observations

https://doi.org/10.23939/jgd2023.01.057
Received: April 30, 2023
1
Institute of Rock Structure and Mechanics of the Academy of Sciences of the Czech Republic
2
Anect Praha
3
Silesian University Opava
4
Czech Technical University
5
Nad Palatou Praha

The theory of continental drift was published as early as 1912, but the mechanism and energy source of this motion has not yet been elucidated. In many cases, the generally accepted model of convection currents in the mantle contradicts observations such as the spreading of the ocean floor, the extension of rifts from triple points to all  sides, the more or less unilateral movement of the lithosphere relative to the mantle, and others. In the first part of the double article, the evolution of views on this issue is shown, as well as measured data that document the important role of extraterrestrial energy sources for the movement of lithospheric plates in daily, annual and long-term climate cycles. In the second part of the two-part article, the entire theory of the mechanism of lithospheric plate motion will be outlined, based on the accumulation of incoming energy from the Sun in crustal rocks, the ratcheting mechanism, and the thermoelastic wave penetrating from the Earth's surface through the entire crust.

  1. Agostini, M., Altenmüller, K., Appel, S., Atroshchenko, V., Bagdasarian, Z., Basilico, D., ... & Borexino Collaboration. (2020). Comprehensive geoneutrino analysis with Borexino. Physical Review D, 101(1), 012009. https://doi.org/10.1103/PhysRevD.101.012009
  2. Allègre, C., Manhès, G., & Lewin, É. (2001). Chemical composition of the Earth and the volatility control on planetary genetics. Earth and Planetary Science Letters, 185(1-2), 49-69. https://doi.org/10.1016/S0012-821X(00)00359-9
  3. Anderson, Don L., & Dziewonski, A. M. (1984). The Earth's interior: A new frontier and a new challenge for earth scientists: in Global Change, no. 5, eds. T. F. Malone and J. G. Roederer, ICSU Press, p. 345-353. https://authors.library.caltech.edu/45511/1/Anderson_1985p195.pdf
  4. Anderson, D. L. (1988). Temperature and pressure derivatives of elastic constants with application to the mantle, Jour. Geophys. Res., 93, p. 4688-4700. https://doi.org/10.1029/JB093iB05p04688
  5. Anderson, D. L. (2000). The thermal state of the upper mantle; No role for mantle plumes, Geophysical Research Letters, 27(22), 3623-3626. https://doi.org/10.1029/2000GL011533
  6. Belousov, V. V. (1962). Basic problems in geotectonics, McGraw-Hill, New York.
  7. Benioff, H. (1949). Seismic evidence for the fault origin of oceanic deeps. Bulletin of the Geological Society of America. 60 (12): 1837-1866. https://doi.org/10.1130/0016-7606(1949)60[1837:SEFTFO]2.0.CO;2
  8. Berger, J. & Wyatt, F. (1973). Some observations on earth strain tides in California, Phil. Trans. Roy. Soc. London, Ser. A, 274, 67-277. https://royalsocietypublishing.org/doi/abs/10.1098/rsta.1973.0052
  9. Berger, J. (1975). A Note on Thermoelastic Strains and Tilts, J. Geophys. Res., 80, 274-277. https://doi.org/10.1029/JB080i002p00274
  10. Braitenberg, C., Romeo, G., Taccetti, Q., & Nagy, I. (2006). The very-broad-band long-base tiltmeters of Grotta Gigante (Trieste, Italy): Secular term tilting and the great Sumatra-Andaman islands earthquake of December 26, 2004. Journal of Geodynamics, 41(1-3), 164-174. https://doi.org/10.1016/j.jog.2005.08.015
  11. Brázdil, R., et al. (1988): Introduction to the planet Earth study. SPN, Praha, 368 pp. (in Czech)
  12. Brimich, L. (2006). Strain measurements at the Vyhne tidal station. Contributions to geophysics and geodesy, Vol. 36/4. https://journal.geo.sav.sk/cgg/article/view/337
  13. Buffett, B. A. (2002). Estimates of heat flow in the deep mantle based on the power requirements for the geodynamo. Geophysical Research Letters, 29(12), 7-1. https://doi.org/10.1029/2001GL014649https://doi.org/10.1029/2001GL014649
  14. Carey, W. S. (1958). The tectonic approach to continental drift. In: S. W. Carey (ed.): Continental drift – A symposium. University of Tasmania, Hobart, 177-363 (expanding Earth from p. 311 to p. 349).
  15. Carey, S. W. (1975). The Expanding Earth-an essay review, Earth Sci. Rev.,11, 105–143. https://doi.org/10.1016/0012-8252(75)90097-5
  16. Carey, S. W. (1976). The expanding Earth. Elsevier, Amsterdam, pp. 488.
  17. Crespi, M., Cuffaro, M., Doglioni, C., Giannone1, F. & Riguzzi, F. (2007). Space geodesy validation of the global lithospheric flow. Geophys. J. Int., 168, 491–506. https://doi.org/10.1111/j.1365-246X.2006.03226.x
  18. Croll, J. G. A. (2019). Phanerozoic climate and vertical tectonic cycles. UCL Press. https://doi.org/10.14324/111.444/000009.v1. p 1-7. https://www.researchgate.net/publication/331082713_Phanerozoic_Climate_and_Vertical_Tectonic_Cycles
  19. Davies, J. H., & Davies, D. R. (2010). Earth's surface heat flux. Solid Earth, 1(1), 5-24. https://doi.org/10.5194/se-1-5-2010, 2010.
  20. Denis, C., Schreider, A.A., Varga, P., & Zavoti, J. (2002). Despinning of the Earth rotation in the geological past and geomagnetic and geomagnetic paleointensities. Journal of Geodynamics, 34, 667-685. https://doi.org/10.1016/S0264-3707(02)00049-2
  21. Doglioni, C. (1993). Geological evidence for a global tectonic polarity. Journal of the geological society, London, 150(5), 991-1002. https://doi.org/10.1144/gsjgs.150.5.0991
  22. Doglioni, C., Carminati, E. & Bonatti, E. (2003). Rift asymmetry and continental uplift. Tectonics, 22(3), 1024, 8-1 – 8-13. https://doi.org/10.1029/2002TC001459.
  23. Doglioni, C., Green, D.H. & Mongelli, F. (2005). On the shallow origin of hotspot and the westward drift of the lithosphere. Geological Society of America Special Paper, 388, 735-749. https://doi.org/10.1130/0-8137-2388-4.735
  24. Doglioni, C. (2014). Asymmetric Earth: mechanisms of plate tectonics and earthquakes. Rendiconti Accademia Nazionale delle Scienze detta dei XL, Memorie di Scienze Fisiche e Naturali, 9–27, https://doi.org/10.4399/97888548717171.
  25. Domeier, M, & Torsvik, T. H. (2014). Plate tectonics in the late Paleozoic. Geoscience Frontiers, 5(3), 303-350. https://doi.org/10.1016/j.gsf.2014.01.002
  26. Dziewonski, A. M., & Anderson, Don L., (1984). Seismic tomography of the Earth's interior: Am. Scientist, 72(5), 483-494. https://www.jstor.org/stable/27852863.
  27. Foulger, G. R.  (2010). Plates vs Plumes: A Geological Controversy. Wiley-Blackwell. 328 pp. https://doi.org/10.1002/9781444324860
  28. Gando A. et al. (KamLAND Collaboration, 45 co-authors) (2013). Reactor on-off antineutrino measurement with KamLAND. Physical Review D, 88 (3), Article 033001. https://doi.org/10.1103/PhysRevD.88.033001
  29. Garai, J. (1997). The driving mechanism of plate tectonics, Eos, Transactions, AGU, 78 (46) Fall Meet. Suppl., pp. 712. https://doi.org/10.48550/arXiv.0709.1303
  30. Garai, J. (2007) Global coupling at 660 km is proposed to explain plate tectonics and the generation of the earth’s magnetic field. arXiv preprint arXiv:0709.1303. https://doi.org/10.48550/arXiv.0709.1303
  31. Gerdes A., Wörner G., & Henk, A. (2000). Postcollisional granite generation and HT-HP metamorphism by radiogenic heating: the Variscan South Bohemian Batholith. Journal of the Geological Society, 157: 577-587. https://doi.org/10.1144/jgs.157.3.577
  32. Grillo, B., Braitenberg, C., Devoti, R. & Nagy, I. (2011). The study of karstic aquifers by geodetic measurements in bus de la Genziana station – Cansiglio plateau (northeastern Italy). Acta Carsologica, 40/1, 161–173, Postojna 2011. https://doi.org/10.3986/ac.v40i1.35
  33. Heaton, T.H. (1975). Tidal Triggering of Earthquakes. Geophysical Journal International, 43(2), 307-326, https://doi.org/10.1111/j.1365-246X.1975.tb00637.x
  34. Heirtzler, J. R., Le Pichon, X., & Baron, J. G. (1966, June). Magnetic anomalies over the Reykjanes Ridge. In Deep Sea Research and Oceanographic Abstracts, 13(3), 427-443). Elsevier.. https://doi.org/10.1016/0011-7471(66)91078-3
  35. Holmes A. (1928). Radioactivity and Earth movements. Transactions of the Geological Society of Glasgow. 18, 559-606. https://doi.org/10.1144/transglas.18.3.559
  36. Holmes, A. (1939). Radioaktivity and the Earth movement. Trans. Geol. Soc. Glasg., 28, 559-606. https://doi.org/10.1144/transglas.18.3.559
  37. Holmes, A. (1944). Principles of Physical Geology. (Edinburgh: Thomas Nelson and Sons, 1944 and New York: Ronald Press, 1945).
  38. Hvožďara, M., Brimich, L., & Skalský, L. (1988). Thermo-elastic deformations due to annual temperature variation at the tidal station in Vyhne. Studia Geophysica et Geodaetica, 32(2), 129-135. https://doi.org/10.1007/BF01637575
  39. Illis, B. (2009). Searching the PaleoClimate Record for Estimated Correlations: Temperature, CO2 and Sea Level. Watts up with that?
  40. Jeffreys, H. (1974). Theoretical aspects of continental drift. In Kahle, pp. 395-405.
  41. Kalenda, P., Skalský, L., & Málek, J. (2005). Effect of earth tides on California seismicity. Seminar MFF UK Praha, 22.4.2005. (in Czech)
  42. Kalenda, P., Neumann, L., Málek, J., Skalský, L., Procházka, V., Ostřihanský, L., Kopf, & T., Wandrol, I. (2012). Tilts, global tectonics and earthquake prediction. SWB, London, 247pp. http://seismonet.com/media_files/1/POL_Tilts_Global%20Tectonics%20and%20Earthquake%20Prediction.pdf
  43. Kalenda, P., & Neumann, L. (2014). The tilt of the elevator shaft of bunker Skutina. Transactions of the VŠB. Technical University of Ostrava, Mechanical Series, 1(LX), 55-62. http://transactions.fs.vsb.cz/2014-1/1978.pdf
  44. Kalenda, P., Wandrol, I., Holub, K. & Rušajová, J. (2015). The possible explanation of seasonal and annual variations of secondary microseisms. Terrestrial Atmospheric and Oceanic Sciences, 26(2), 103-109. https://pdfs.semanticscholar.org/96c7/39372bb91dde027a506f02d119556c32ba... https://doi.org/10.3319/TAO.2014.10.15.01(T)
  45. Kárník,V., & Tobyáš, V. (1961). Underground measurements of the seismic noise level. Studia Geophysica et Geodaetica, 5(3), 231-236. https://doi.org/10.1007/BF02585381
  46. Kery, P., & Vine, F.(1996). Global Tectonics, Blackwell Science. Surveys in Geophysics, 19(1).
  47. Kutterolf, S., Jegen M., Mitrovica J. X., Kwasnitschka T., Freundt A., &  Huybers P. J. (2013). A detection of Milankovitch frequencies in global volcanic activity. Geology, 41(2), 227-230; https://doi.org/10.1130/G33419.1
  48. Lee K.K.M., Steinle-Neumann, G., & Jeanloz, R (2004). Ab-initio high-pressure alloying of iron and potassium: Implications for the Earth's core. Geophysical Research Letters, 31(11), Art. No. L11603. https://doi.org/10.1029/2004GL019839
  49. Melchior, P. & Skalský, L. (1969). Station: Příbram/Belg. Mesures faites dans les composantes Nord-Sud et Est-Ouest avec les pendules horizontaux VN No. 76 et No.77 en 1966, 1967 et 1968. Observatorie Royal de Belgique.
  50. McDonough W. F., & Sun S. (1995). The composition of the Earth. Chemical geology, 120(3-4), 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
  51. Munk, W., & Wunsch C. (1998). Abyssal recipes II: energetics of tidal and wind mixing. Deep Sea Research Part I: Oceanographic Research Papers, 45(12), 1977-2010. https://doi.org/10.1016/S0967-0637(98)00070-3
  52. Neumann, L. (2005). Gravity dynamics and gravity noise on the Earth surface. 116 pp. http://www.dynamicgravity.org/p1/doc/AppendixB-Results.pdf
  53. Neumann, L., & Kalenda, P. (2010). Static vertical pendulum – apparatus for in-situ relative stress measurement. In: Rock stress and earthquakes (F.Xie ed.), 255-261. https://onepetro.org/ISRMISRS/proceedings-abstract/ISRS10/All-ISRS10/386...https://doi.org/10.1201/b10555-43
  54. Ostřihanský, L. (2004). Plate movements, earthquakes and variations of the Earth's rotation. Acta Universitatis Carolinae – Geologica, 48(1):89-98.
  55. Ostřihanský, L. (2012). Earth's rotation variations and earthquakes 2010-2011. Solid Earth Discussions, 4(1): 33-130. https://doi.org/10.5194/sed-4-33-2012.
  56. Pratt, D. (2000). Plate Tectonics: A Paradigm Under Threat. Journal of Scientific Exploration, 1493), 307-352, 2000). http://www.portalgeobrasil.org/geo/mat/terra/14.3_pratt.pdf
  57. Procházka V. (2014). Composition of atmosphere and the climate in ancient past of the Earth: What is the relation with movement of lithospheric plates (discussion). Acta Mus. Meridionale, Sci. Nat. 53, 46-51.
  58. Rajlich P. (2004). Geology between the expansion of the Earth and Bohemia. 234 pp.(in Czech).
  59. Ransford, G. A. (1982). The accretional heating of the terrestrial planets: a review, Physics of the Earth and Planetary Interiors, 29(3-4), 209-217. https://doi.org/10.1016/0031-9201(82)90012-7
  60. Richard, Y., Doglioni, C. & Sabedini, R. (1991). Differential rotation between lithosphere and mantle: a consequence of lateral mantle viscosity variations. Journal of Geophysical Research: Solid Earth, 96(B5), 8407-8415. https://doi.org/10.1029/91JB00204
  61. Rousseau, A. (2005). A new global theory of the Earth's dynamics: a single cause can explain all the geophysical and geological phenomena. http://hal.archivesouvertes. fr/docs/00/02/94/00/PDF/global-geodyn.pdf.
  62. Rudnick, R. L. & Fountain, D. M. (1995). Nature and composition of the continental crust: a lower crustal perspective. Reviews of Geophysics, 33, 267–309. https://doi.org/10.1029/95RG01302
  63. Sammon L. G., & McDonough W. F. (2022). Quantifying Earth’s radiogenic heat budget. Earth Planet. Sci. Lett. 593, 117684, https://doi.org/ 10.1016/j.epsl.2022.117684.
  64. Saunders, A. D., & Tarney, J. (1984). Geochemical characteristics of basaltic volcanism within back-arc basins. Geological Society, London, Special Publications, 16(1), 59-76. https://doi.org/10.1144/GSL.SP.1984.016.01.05
  65. Scalera, G., & Jacob, K. H. (2003). Why expanding Earth? A book in honour of Ott Christoph Hilgenberg. INGV Publisher, Roma, 465 pp. https://ci.nii.ac.jp/ncid/BA65189019?l=ja
  66. Scoppola, B., Boccaletti, D., Bevis, M., Carminati, E. & Doglioni, C., (2006). The westward drift of the lithosphere: A rotational drag? Geological Society of America Bulletin, 118(1-2), 199-209. https://doi.org/10.1130/B25734.1
  67. Scotese, Ch. R. (2003). Paleomap project. http://www.scotese.com/climate.htm.
  68. Scotese, Ch. R. (2009). Late Proterozoic plate tectonics and palaeogeography: a tale of two supercontinents, Rodinia and Pannotia. Geological Society, London, Special Publications, 326, 67-83, https://doi.org/10.1144/SP326.4
  69. Schubert, G., Turcotte, D. L., & Olson. P. (2001). Mantle Convection in the Earth and Planets. [s.l.]: Cambridge University Press, 2001. ISBN 052135367Xhttps://doi.org/10.1017/CBO9780511612879
  70. Sheth, H. C. (2011). Book reviews: Foulger 'Plates_vs_Plumes_A_Geological_Controversy“.  BOOK REVIEWS. Current Science, Vol. 100, No. 1, 10 January 2011 , 122-124.
  71. Stejskal, V., Skalský, L. & Kašpárek, L. (2007). Results of two-years' seismo-hydrological monitoring in the area of the Hronov-Poříčí Fault Zone, Western Sudetes. Acta Geodynamica et Geomaterialia, 4(4), 59-76. https://www.irsm.cas.cz/materialy/acta_content/2007_04/5_Stejskal.pdf
  72. Tanimoto T., Lay T. (2000). Mantle dynamics and seismic tomography. Proceedings of the National Academy of Science. Vol. 97, No. 23, pp. 12409–12410. https://doi.org/10.1073/pnas.210382197. PMID 11035784.
  73. Taylor S. R., & McLennan S. M. (1985). The continental crust: its composition and evolution. – Blackwell, Oxford, 312 pp. https://www.osti.gov/biblio/6582885
  74. Varga, P., Gambis, D., Bizouard, Ch., Bus1, Z. & Kiszely, M. (2005). Tidal influence through LOD variations on the temporal distribution of earthquake occurrences. Proc. of Conferrence „Earth dynamics and reference systems: five years after the adoption of the IAU 2000 Resolutions“, Warszawa. https://syrte.obspm.fr/jsr/journees2005/pdf/s3_09_Varga.pdf
  75. Vine, F. J., & Mathews, D. H. (1963). Magnetic anomalies over oceanic ridges. Nature, 199, 947-949. http://www.muststayawake.com/SDAG/library/Science/BirthOfPlateTectonicsT...https://doi.org/10.1038/199947a0
  76. Vine, F. J. (1966). Sea-floor spreading of the ocean floor: new evidence. Science, 154, 1405-1415. https://doi.org/10.1126/science.154.3755.1405
  77. Wandrol, I. (2017). Modelling the mechanical behaviour of the Earth's crust. Disertation, VŠB-TU Ostrava, 2017 (in Czech??).
  78. Wedepohl, K. H. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta. 59. 1217-1232. https://doi.org/10.1016/0016-7037(95)00038-2.
  79. Wegener, A. (1912), Die Entstehung der Kontinente, Peterm. Mitt.: 185-195, 253-256, 305-309. https://doi.org/10.1007/BF02202896
  80. Zátopek, A. (1941). About seismic unrest. ŘH, 22 (1941), 59, 81. (in Czech) https://doi.org/10.1177/104438944102200206
  81. Zielinski, G. A., Mayewski, P. A., Meeker, L. D., Whitlow, S., & Twickler, M. S. (1996). A 110,000-yr record of explosive volcanism from the GISP2 (Greenland) ice core. Quaternary Research, 45(2), 109-118. https://doi.org/10.1006/qres.1996.0013