The parameters and mechanisms of the source of modern earthquakes in the Eastern Baltic region are systematized. The predominant types of focal mechanisms of continental earthquakes are strike-slip and reverse. A generalized map of the orientation of maximum horizontal stresses in the East Baltic region and adjacent territories has been created. To create this map, we utilized the World Stress Map database and added the directions of maximum horizontal stresses in Estonia. The direction of maximum horizontal stresses changes from north (Estonia) to south (Kaliningrad region of Russian Federation) from 102º–114º to 157º–166º. The study investigated how the deep geological structure and gravitational forces in different parts of the earth's crust affect the direction of maximum horizontal stresses. It was observed that the direction of maximum horizontal stress changed when crossing only one of a deep tectonic fault. The direction of maximum horizontal stress showed the high correlation values with the gravitational effect of the sedimentary cover (negative correlation), the averaged difference gravitational field, and the gravitational effect of the crustal layer up to the Conrad boundary.
- Avotinya, I. Ya., Boborykin, A. M. et al (1988). Catalog of historical earthquakes in Belarus and the Baltic states. Seismological bulletin of seismic stations “Minsk” (Pleschenitsy) and “Naroch” for 1984, 126–137 (In Russian).
- Ankudinov, S. A., Brio, H. S., & Sadov, A. S. (1991). The deep structure of the earth's crust on the territory of the Baltic republics according to seismic data from the Deep Seismic Sounding. Belarusian Seismological Bulletin, 1, 111–117 (In Russian).
- Boborykin, A. M., Garetsky, R. G., Emelyanov, A. P., Sildvee, H. H., & Suveizdis, P. I. (1993). Earthquakes of Belarus and the Baltic States. Current state of seismic observations and their generalizations (Methodological works of ESSN), 4, 29–39.
- Bock, G. (2012). Source parameters and moment-tensor solution. GeoForschungZentrum Potsdam, Germany. 14 p., https://doi.org/10.2312/GFZ.NMSOP-2_IS_3.8
- Brangulis, A., & Kanevs, S. (2002). Latvijas tektonika. Valsts geologijas dienests, 50 p.
- Brown, E. T, & Hoek, E. (1978). Trends in relationships between measured in situ stresses and depth. Int J Rock Mech Min Sci Geomech Abstr, 15, 211–215 https://www.rocscience.com/assets/resources/learning/hoek/Trends-in-Rela...(78)91227-5
- Doss, B. (1910). Die historisch beglaubigten Einsturzbeben und seismisch-akustischen Phänomene der russischen Ostseeprovinzen. Beiträge zur Geophysik. Leipzig, X.Band, pp. 1–124.
- Gregersen, S., Wiejacz, P., Debski, W., Domanski, B., Assinovskaya, B., Guterh, B., Mantyniemi, P., Nikulin, V.G., Pacesa, A., Puura, V., Aronov, A.G., Aronova, T.I., Grunthal, G., Husebye, E.S., & Sliaupa, S. (2007). The exceptional earthquakes in Kaliningrad district, Russia on September 21, 2004. Physics of the Earth Planetary Interiors, 164, 63-74. https://doi.org/10.1016/j.pepi.2007.06.005
- Heidbach, O., M. Rajabi, K. Reiter, M.O. Ziegler, WSM Team (2016). World Stress Map Database Release 2016. GFZ Data Services, https://doi.org/10.5880/WSM.2016.001
- Heidbach, O., M. Rajabi, X. Cui, K. Fuchs, B. Müller, J. Reinecker, K. Reiter, M. Tingay, F. Wenzel, F. Xie, M.O. Ziegler, M.-L. Zoback, and M. D. Zoback (2018). The World Stress Map database release 2016: Crustal stress pattern across scales. Tectonophysics, 744,484-498, https://doi.org/10.1016/j.tecto.2018.07.007
- Hergert, T, & Heidbach, O. (2011). Geomechanical model of the Marmara Sea region - II. 3-D contemporary background stress field. Geophysical Journal International, 185(3),1090–1102. https://doi.org/10.1111/j.1365-246X.2011.04992.x
- Knopoff, L., & Randall, M. J. (1970). The compensated linear-vector dipole. A possible mechanism for deep earthquakes, Journal of Geophysical Research, 75(26), 4957–4963. https://doi.org/10.1029/JB075i026p04957
- McNutt, M. (1980). Implications of Regional Gravity for State of Stress in the Earth’s Crust and Upper Mantle. Journal of Geophysical Research, 85 (B11), 6377–6396. https://doi.org/10.1029/JB085iB11p06377
- Müller, B, Wehrle, V, Hettel, S, Sperne,r B, & Fuchs, F. (2003). A new method for smoothing oriented data and its application to stress data. In: M Ameen (ed) Fracture and in situ stress characterization of hydrocarbon reservoirs. Special Publication: Geological Society, London, 209(1), pp 107–126. https://doi.org/10.1144/GSL.SP.2003.209.01.11
- Nikonov, A. A., & Sildvee, H. (1991). Historical earthquakes in Estonia and their seismotectonic position. Geophysica, 27(1–2), 79–93. https://www.geophysica.fi/pdf/geophysica_1991_27_1-2_079_nikonov.pdf
- Nikulins, V. (2019). Geodynamic Hazard Factors of Latvia: Experimental Data and Computational Analysis. Baltic Journal of Modern Computing, 7 (1), 151–170. https://doi.org/10.22364/bjmc.2019.7.1.11
- Nikulins, V., Malytskyy D. (2021). Focal mechanism of the Kaliningrad earthquake of 21 September 2004 based on waveform inversion using a limited number of stations. Baltica, 34(1), 95–107. https://doi.org/10.5200/baltica.2021.1.8
- Ozolinya, N. K., & Kovrigin, V. P. (1986). Report on the topic “Generalization of the physical properties of rocks on the territory of the Latvian SSR” for 1984-1986. Geology Department of the Latvian SSR, KGE, vol. 1, 144 p.
- Paskevicius J. (1997). The Geology of the Baltic Republics. Vilnius, 387 p.
- Slunga, R. S. (1979). Source mechanism of a Baltic earthquake inferred from surface wave recordings. Bulletin of the Seismological Society of America, 69(6), 1931–1964. https://doi.org/10.1785/BSSA0690061931
- Slunga, R., & Ahjos, T. (1986). Fault mechanisms of Finnish earthquakes, crustal stress and faults. Geophysica, 22(1–2), 1–13. https://archive.geophysica.fi/pdf/geophysica_1986_22_1-2_001_slunga.pdf
- Soosalu, H., Uski, M., Komminaho, K., Veski, A. (2022). Recent Intraplate Seismicity in Estonia, East European Platform. Seismological Research Letters, 93(3), pp. 1800–1811. https://doi.org/10.1785/0220210277
- Tingay M. (2009). State and Origin of Present-Day Stress Field in Sedimentary Basin. ASEG Extended Abstracts, 1, 1–10. https://doi.org/10.1071/ASEG2009ab037