The purpose of the research is differentiation of recent geodynamic processes within the Carpathian Mountains on the basis of freely available GNSS data. Methodology. The methodology included GNSS data collection, processing and analysis. An algorithm for processing was proposed, which consisted of 5 main stages: transformation of data into an internal format, verification of time series for compliance with requirements, determination of horizontal velocities, division of the GNSS network into triangles, and determination of deformation parameters. Results. This study presents a comprehensive analysis of recent geodynamic processes based on GNSS data freely available from the Nevada Geological Survey. Taking into account the requirements for time series, 50 GNSS stations were selected and processed. In general, absolute and regional velocities were obtained and analysed during 2000–2023. Regional velocities of horizontal movements were used to calculate the deformation tensor and deformation parameters. The results of the study are consistent and correlate well with the studies of other scientists. The obtained results confirm the presence of active geodynamic processes within the Carpathians. Originality. The proposed approach made it possible to estimate the main deformation parameters (value and direction of deformation axes, total shear and dilation) within the Carpathian Mountains. This makes it possible to analyse and predict recent geodynamic processes in the region. Practical significance. On the basis of the calculated values, maps of the distribution of vectors of absolute and regional horizontal velocities, total shear rates, dilatation rates, and rotation rates were constructed.
- 1. Alizadeh-Khameneh, M. A., Eshagh, M., & Jensen, A. B. (2018). Optimization of deformation monitoring networks using finite element strain analysis. Journal of Applied Geodesy, 12(2), 187-197.
https://doi.org/10.1515/jag-2017-0040
2. Altamimi, Z., Métivier, L., Rebischung, P., Rouby, H., & Collilieux, X. (2017). ITRF2014 plate motion model. Geophysical Journal International, 209(3), 1906-1912. doi:10.1093/gji/ggx136
https://doi.org/10.1093/gji/ggx136
3. Altamimi, Z., Rebischung, P., Métivier, L., & Collilieux, X. (2016). ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. Journal of Geophysical Research: Solid Earth, 121(8), 6109-6131. doi:10.1002/2016jb013098
https://doi.org/10.1002/2016JB013098
4. Argus, D. F., & Gordon, R. G. (1996). Tests of the rigid-plate hypothesis and bounds on intraplate deformation using geodetic data from very long baseline interferometry. Journal of Geophysical Research: Solid Earth, 101(B6), 13555-13572. doi:10.1029/95jb03775
https://doi.org/10.1029/95JB03775
5. Bednárik, M., Papco, J., Pohánka, V., Bezák, V., Kohút, I., & Brimich, L. (2016). Surface strain rate colour map of the Tatra Mountains region (Slovakia) based on GNSS data. Geologica Carpathica, 67(6), 509.
https://doi.org/10.1515/geoca-2016-0032
6. Bird, P. (2003). An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems, 4(3). doi:10.1029/2001gc000252
https://doi.org/10.1029/2001GC000252
7. Blewitt, G., Hammond, W., & Kreemer, C. (2018). Harnessing the GPS data explosion for interdisciplinary science. Eos, 99(2), e2020943118. doi: 10.1029/2018EO104623
https://doi.org/10.1029/2018EO104623
8. Braclawska, A., & Idziak, A. F. (2019). Unification of data from various seismic catalogues to study seismic activity in the Carpathians Mountain arc. Open Geosciences, 11(1), 837-842.
https://doi.org/10.1515/geo-2019-0065
9. Brusak, I., & Tretyak, K. (2021, October). On the impact of non-tidal atmospheric loading on the GNSS stations of regional networks and engineering facilities. In International Conference of Young Professionals «GeoTerrace-2021» (Vol. 2021, No. 1, pp. 1-5). European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.20215K3013
https://doi.org/10.3997/2214-4609.20215K3013
10. Caporali, A. (2003). Average strain rate in the Italian crust inferred from a permanent GPS network - I. Statistical analysis of the time-series of permanent GPS stations. Geophysical Journal International, 155(1), 241-253. p. 205
https://doi.org/10.1046/j.1365-246X.2003.02034.x
11. Caporali, A., Aichhorn, C., Barlik, M., Becker, M., Fejes, I., Gerhatova, L., ... & Virag, G. (2009). Surface kinematics in the Alpine-Carpathian-Dinaric and Balkan region inferred from a new multi-network GPS combination solution. Tectonophysics, 474(1-2), 295-321.
https://doi.org/10.1016/j.tecto.2009.04.035
12. Caporali, A., Aichhorn, C., Becker, M., Fejes, I., Gerhatova, L., Ghitau, D., ... & Zablotskyi, F. (2008). Geokinematics of Central Europe: new insights from the CERGOP-2/Environment Project. Journal of Geodynamics, 45(4-5), 246-256.
https://doi.org/10.1016/j.jog.2008.01.004
13. Caporali, A., Martin, S., & Massironi, M. (2003). Average strain rate in the Italian crust inferred from a permanent GPS network - II. Strain rate versus seismicity and structural geology. Geophysical Journal International, 155(1), 254-268. p. 218
https://doi.org/10.1046/j.1365-246X.2003.02035.x
14. Caporali, A., Zurutuza, J., Bertocco, M., Ishchenko, M., & Khoda, O. (2019). Present day geokinematics of central Europe. Journal of Geodynamics, 132, 101652.
https://doi.org/10.1016/j.jog.2019.101652
15. Cronin, V.S., and Resor, P.G., 2021, Algorithm for triangle-strain analysis: accessible via https://croninprojects.org/Vince/Geodesy/TriangleStrainAlgorithm-2021122...
16. Csontos, L., & Vörös, A. (2004). Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeogeography, Palaeoclimatology, Palaeoecology, 210(1), 1-56.
https://doi.org/10.1016/j.palaeo.2004.02.033
17. Delaunay B. Sur la sphère vide, Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk, 7:793-800, 1934
18. Doskich, S. (2021). Deformations of the land crust of the Carpathian region according to the data of GNSS observation. Cartography, and Aerial Photography, 93(1), 35-41.
https://doi.org/10.23939/istcgcap2021.93.035
19. Fazilova, D. S., & Sichugova, L. V. (2021). Deformation analysis based on GNSS measurements in Tashkent region. In E3S Web of Conferences (Vol. 227, p. 04002). EDP Sciences.
https://doi.org/10.1051/e3sconf/202122704002
20. Ismail-Zadeh, A., Matenco, L., Radulian, M., Cloetingh, S., & Panza, G. (2012). Geodynamics and intermediate-depth seismicity in Vrancea (the south-eastern Carpathians): current state-of-the art. Tectonophysics, 530, 50-79.
https://doi.org/10.1016/j.tecto.2012.01.016
21. Kondracki, J. A. (2023). Carpathian Mountains. Encyclopedia Britannica. https://www.britannica.com/place/Carpathian-Mountains
22. Kowalczyk, K., Bogusz, J., & Figurski, M. (2014). The analysis of the selected data from Polish Active Geodetic Network stations with the view on creating a model of vertical crustal movements. In Environmental Engineering. Proceedings of the International Conference on Environmental Engineering. ICEE (Vol. 9, p. 1). Vilnius Gediminas Technical University, Department of Construction Economics & Property.
https://doi.org/10.3846/enviro.2014.221
23. Kreemer, C., Blewitt, G., & Klein, E. C. (2014). A geodetic plate motion and Global Strain Rate Model. Geochemistry, Geophysics, Geosystems, 15(10), 3849-3889. doi:10.1002/2014gc005407
https://doi.org/10.1002/2014GC005407
24. Lazos, I., Sboras, S., Pikridas, C., Pavlides, S., & Chatzipetros, A. (2021). Geodetic analysis of the tectonic crustal deformation pattern in the North Aegean Sea, Greece. Mediterranean Geoscience Reviews, 3, 79-94. doi:10.1007/s42990-021-00049-6
https://doi.org/10.1007/s42990-021-00049-6
25. Márton, E., Rauch-Włodarska, M., Krejčí, O., Tokarski, A. K., & Bubík, M. (2009). An integrated palaeomagnetic and AMS study of the Tertiary flysch from the Outer Western Carpathians. Geophysical Journal International, 177(3), 925-940.
https://doi.org/10.1111/j.1365-246X.2009.04104.x
26. Matenco, L., Bertotti, G., Leever, K., Cloetingh, S. A. P. L., Schmid, S. M., Tărăpoancă, M., & Dinu, C. (2007). Large‐scale deformation in a locked collisional boundary: Interplay between subsidence and uplift, intraplate stress, and inherited lithospheric structure in the late stage of the SE Carpathians evolution. Tectonics, 26(4).
https://doi.org/10.1029/2006TC001951
27. Mráz, P., & Ronikier, M. (2016). Biogeography of the Carpathians: evolutionary and spatial facets of biodiversity. Biological journal of the Linnean Society, 119(3), 528-559.
https://doi.org/10.1111/bij.12918
28. Müller, B., Heidbach, O., Negut, M., Sperner, B., & Buchmann, T. (2010). Attached or not attached-evidence from crustal stress observations for a weak coupling of the Vrancea slab in Romania. Tectonophysics, 482(1-4), 139-149.
https://doi.org/10.1016/j.tecto.2009.08.022
29. Porkoláb, K., Broerse, T., Kenyeres, A., Békési, E., Tóth, S., Magyar, B., & Wesztergom, V. (2023). Active tectonics of the Circum-Pannonian region in the light of updated GNSS network data. Acta Geodaetica et Geophysica, 58(2), 149-173.
https://doi.org/10.1007/s40328-023-00409-8
30. Roštínský, P., Pospíšil, L., Švábenský, O., Kašing, M., & Nováková, E. (2020). Risk faults in stable crust of the eastern Bohemian Massif identified by integrating GNSS, levelling, geological, geomorphological and geophysical data. Tectonophysics, 785, 228427.
https://doi.org/10.1016/j.tecto.2020.228427
31. Sandulescu, M. (1988). Cenozoic Tectonic History of the Carpathians: Chapter 2.
https://doi.org/10.1306/M45474C2
32. Savchyn, I., & Bilashuk, A. (2023, October). Differentiation of recent geodynamic processes within the Carpathian Mountains based on GNSS data. In International Conference of Young Professionals «GeoTerrace-2023» (Vol. 2023, No. 1, pp. 1-5). European Association of Geoscientists & Engineers. doi:10.3997/2214-4609.2023510011
https://doi.org/10.3997/2214-4609.2023510011
33. Savchyn, I., & Vaskovets, S. (2018). Local geodynamics of the territory of Dniester pumped storage power plant. Acta Geodyn. Geomater, 15(1), 189. doi:10.13168/AGG.2018.0002
https://doi.org/10.13168/AGG.2018.0002
34. Savchyn, I., Lozynskyi, V., Petryk, Y., & Marusazh, K. (2020, May). Geodetic monitoring of the protective dam of the Lviv MSW landfill after reconstruction. In Geoinformatics: Theoretical and Applied Aspects 2020 (Vol. 2020, No. 1, pp. 1-5). European Association of Geoscientists & Engineers. doi:10.3997/2214-4609.2020geo130
https://doi.org/10.3997/2214-4609.2020geo130
35. Savchyn, I., Tretyak, K., Hlotov, V., Shylo, Y., Bubniak, I., Golubinka, I., & Nikulishyn, V. (2021). Recent local geodynamic processes in the Penola strait-Lemaire channel fault area (West Antarctica). Acta Geodynamica et Geomaterialia, 18(2). doi:10.13168/AGG.2021.0018
https://doi.org/10.13168/AGG.2021.0018
36. Schmid, S. M., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S., Schuster, R., ... & Ustaszewski, K. (2008). The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss Journal of Geosciences, 101, 139-183.
https://doi.org/10.1007/s00015-008-1247-3
37. Sperner, B., Ioane, D., & Lillie, R. J. (2004). Slab behaviour and its surface expression: new insights from gravity modelling in the SE-Carpathians. Tectonophysics, 382(1-2), 51-84.
https://doi.org/10.1016/j.tecto.2003.12.008
38. Staniszewska, D., Liwosz, T., Pachuta, A., Próchniewicz, D., & Szpunar, R. (2023). Geodynamic studies in the Pieniny Klippen Belt in 2004-2020. Artificial Satellites, 58(2), 88-104.
https://doi.org/10.2478/arsa-2023-0007
39. Szűcs, E., Bozsó, I., Kovács, I. J., Bányai, L., Gál, Á., Szakács, A., & Wesztergom, V. (2018). Probing tectonic processes with space geodesy in the south Carpathians: insights from archive SAR data. Acta Geodaetica et Geophysica, 53, 331-345.
https://doi.org/10.1007/s40328-018-0228-x
40. Tretyak, K. R., & Brusak, І. (2020). The research of interrelation between seismic activity and modern horizontal movements of the Carpathian-Balkan region based on the data from permanent GNSS stations. Geodynamics, 28(1), 5-18.
https://doi.org/10.23939/jgd2020.01.005
41. Tretyak, K. R., & Vovk, A. I. (2012). Study of the dynamics of horizontal movements of the European earth's crust based on GNSS observations (2000-2010). Geodynamics.
42. Tretyak, K., Korliatovych, T., & Brusak, I. (2021, October). Applying the statistical method of GNSS time series analysis for the detection of vertical displacements of Dnister HPP-1 dam. In International Conference of Young Professionals «GeoTerrace-2021» (Vol. 2021, No. 1, pp. 1-5). European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.20215K3012
https://doi.org/10.3997/2214-4609.20215K3012
43. Zurutuza, J., Caporali, A., Bertocco, M., Ishchenko, M., Khoda, O., Steffen, H., ... & Nykiel, G. (2019). The central European GNSS research network (CEGRN) dataset. Data in brief, 27, 104762.
https://doi.org/10.1016/j.dib.2019.104762