THE USE OF AN ULTRASONIC FLOW METER IN THE ZONE OF INFLUENCE OF INDIRECT SECTIONS OF THE WATER PIPELINE

2022;
: 17-24
https://doi.org/10.23939/jtbp2022.02.017
Received: September 09, 2022
Revised: October 25, 2022
Accepted: November 15, 2022
1
Lviv Polytechnic National University, Department of hydraulics and plumbing
2
Lviv Polytechnic National University, Department of Hydraulic and Water Engineering
3
Lviv Polytechnic National University, Department of Hydraulic and Water Engineering
4
Lviv Polytechnic National University

The accuracy of water flow rate measurement with an ultrasonic flow meter (UFM) is affected by pipeline conditions. On water pipelines, there is often no the required length of direct section, required by the device passport or regulatory documents. Therefore, we conducted experiments using UFM to measure water flow rate in the zone of influence of non-direct sections of the water pipeline. The flow rate was measured in two planes of the pipeline with an offset of 90 o and the average value was taken. Thus, it was expected to take into account the average water velocity for the asymmetric velocity profile. The results of water flow rate measuring with UFM on short direct sections of the water pipeline, limited by pipeline bends sudden constriction of the pipeline, are presented. The greatest influence on the UFM measurement error is the 90 o pipeline bends.

Bilynskyi Y.Y., Stasiuk M.O., Hladyshevskyi M.V. (2015). Analiz metodiv i zasobiv kontroliu vytrat ridkykh i hazopodibnykh seredovyshch ta yikhnia klasyfikatsiia. Naukovi pratsi VNTU: «Avtomatyka ta informatsiino-vymiriuvalna tekhnika», No 1. (in Ukrainian). https://praci.vntu.edu.ua/index.php/praci/article/view/431
Guiping, Yu & Xiaoming, Ma. (2019). Economy Value of High Precision Ultrasound Flowmeter. Journal of Physics: Conference Series. 1237(2):022009. DOI:10.1088/1742-6596/1237/2/022009.
https://doi.org/10.1088/1742-6596/1237/2/022009
Ivanova N.O., Nastiuk M.H., Nikoriak V.V. (2013). Mozhlyvosti vykorystannia suchasnykh metodiv vymiriuvannia morfometrychnykh ta hidravlichnykh parametriv poverkhnevykh vodotokiv (na prykladi richok baseiniv Verkhnoho Prutu ta Siretu). Hidrolohiia, hidrokhimiia i hidroekolohiia: Nauk. Zbirnyk, 1(28). pp. 51-60. (in Ukrainian) https://archer.chnu.edu.ua/handle/123456789/888
ISO 4064-2:2005 "Measurement of water flow in fully charged closed conduits - Meters for cold potable water and hot water - Part 2: Installation requirements". https://www.iso.org/standard/36683.html
Rafik, Sheikh. (2013). Methods of Placement and Installation of UFM to Extend the Linearity Range of Measurement. i-manager's Journal on Instrumentation and Control Engineering. 1. 6-11. DOI:10.26634/jic.1.4.2600.
https://doi.org/10.26634/jic.1.4.2600
Korobko I. V.Pysarets Ye.V., Pysarets A.V. (2016). Otsinka yakosti vyznachennia ob'iemu ta ob'iemnoi vytraty vody. Visnyk NTUU"KPI". Seriia pryladobuduvannia, 51(1). pp. 89-94. (in Ukrainian) http://visnykpb.kpi.ua/issue/view/4589
F. Matiko, V. Roman, H. Matiko, D. Yalinskyi. (2021). Investigation of ultrasonic flowmeter error in distorted flow using two-peak Salami functions. Energy Engineering and Control Systems, Vol. 7, No. 2, pp. 144-151. https://doi.org/10.23939/jeecs2021.02.144.
https://doi.org/10.23939/jeecs2021.02.144
Roman, Vitalii & Matiko, Fedir. (2013). Doslidzhennia pokhybky vymiriuvannia shvydkosti potoku za dopomohoiu ultrazvukovoho peretvoriuvacha iz diametralnym akustychnym kanalom. Vymiriuvalna tekhnika ta metrolohiia, 74. pp. 58-64. (in Ukrainian) https://science.lpnu.ua/uk/node/3836
Bratslavskyi V. V., Pysarets A. V. (2019). Otsinka vplyvu epiury rozpodilu shvydkosti potoku na metrolohichni kharakterystyky vytratomira, 15th Vseukrainska naukovo-praktychna konferentsiia studentiv, aspirantiv ta molodykh vchenykh «Efektyvnist inzhenernykh rishen u pryladobuduvanni», 2019. KPI im. Ihoria Sikorskoho, Kyiv, Ukraina. pp. 206-208. (in Ukrainian) https://ela.kpi.ua/handle/123456789/31683
Jagatheesaperumal, Senthil & Sundaram, Kalyana & Arunachalam, Kamaraj. (2020). A comprehensive review on accuracy in ultrasonic flow measurement using reconfigurable systems and deep learning approaches. AIP Advances. 10(10):16. DOI:10.1063/5.0022154
https://doi.org/10.1063/5.0022154
Grzelak, Sławomir & Czoków, Jarosław & Kowalski, Marcin & Zieliński, Marek. (2014). Ultrasonic Flow Measurement with High Resolution. Metrology and Measurement Systems. 21. pp. 305-316. DOI:10.2478/mms-2014-0026
https://doi.org/10.2478/mms-2014-0026
Stoker, Devin & Barfuss, Steven & Johnson, Michael. (2012). Ultrasonic Flow Measurement for Pipe Installations with Nonideal Conditions. Journal of Irrigation and Drainage Engineering. 138. pp. 993-998. DOI:10.1061/(ASCE)IR.1943-4774.0000486
https://doi.org/10.1061/(ASCE)IR.1943-4774.0000486
Yazdanshenasshad, Behroz & Safizadeh, Mir. (2019). Reducing the additional error caused by the time difference method in transit-time ultrasonic flow meters. IET Science, Measurement & Technology, 13(6). DOI:10.1049/iet-smt.2018.5106
https://doi.org/10.1049/iet-smt.2018.5106
Bosak, M., Odukha, M., Hvozdetskiy, O., Fasuliak, V. (2019). Doslidzhennia ekspluatatsiinoho rezhymu sverdlovyn vodozaboru ta vodohonu. Scientific Bulletin of UNFU. 29. pp. 126-131. DOI:10.36930/40290922 (in Ukrainian)
https://doi.org/10.36930/40290922
Bosak, M., Cherniuk, V., Matlai, I. & Bihun, I. (2019). Studying the mutual interaction of hydraulic characteristics of water­distributing pipelines and their spraying devices in the coolers at energy units. Eastern-European Journal of Enterprise Technologies, 3. pp. 23-29. DOI:10.15587/1729-4061.2019.166309
https://doi.org/10.15587/1729-4061.2019.166309
Zhuk, V., Matlai, I., Popadiuk, I., Vovk, L. and Rehush, V. (2020). Discharge coefficient of broad-crested weirs as a function of the relative weir height for different weir lengths. Theory and Building Practice. 2(2). pp. 63-68. https://doi.org/10.23939/jtbp2020.02.063
https://doi.org/10.23939/jtbp2020.02.063