The article presents the results of research on cementitious systems "Portland cement CEM I 42,5 R - active mineral additives - microfillers - superplasticizer - hardening accelerators" for high-performance concrete with improved corrosion resistance. The resistance of concrete to corrosion caused by the influence of chemical substances was investigated - sulfate corrosion (class XA), which combines the processes of formation and accumulation of sparingly soluble salts in concrete, which are accompanied by internal stresses and destructive phenomena in concrete. The increase in corrosion resistance of high-performance concretes based on modified cementitious systems is explained mainly by the creation of a fine-crystalline microstructure with the formation of C-S-H phases, which contribute to the pores colmatation with age of hardening.
Sanytsky, M., Kropyvnytska, T., Нeviuk, I., Sikora, P. & Braichenko, S. (2021). Development of rapid-hardening ultra-high strength cementitious composites using superzeolite and N-C-S-H-PCE alkaline nanomodifier. Eastern-European Journal of Enterprise Technologies, 5 (6 (113), 62-72. Retrieved from: https://doi.org/10.15587/1729-4061.2021.242813.
https://doi.org/10.15587/1729-4061.2021.242813
Sohail, M., Kahraman, R., Nuaimi, N., Gencturk, B. & Alnahhal, W. (2021). Durability characteristics of high and ultra-high performance concretes. Journal of Building Engineering, 33, 101669. Retrieved from: https://doi.org/10.1016/j.jobe.2020.101669.
https://doi.org/10.1016/j.jobe.2020.101669
, P. (2003). The durability characteristics of high performance concrete. Cement and Concrete Composites, 25 (4-5), 409-420. Retrieved from: https://doi.org/10.1016/S0958-9465(02)00081-1.
https://doi.org/10.1016/S0958-9465(02)00081-1
Sanytsky, M., Rusyn, B., Kirakevych, I. & Kaminskyy, A. (2023). Architectural self-compacting concrete based on nano-modified cementitious systems. International Conference Current Issues of Civil and Environmental Engineering Lviv - Košice - Rzeszów. Proceedings of CEE, 372-380. Retrieved from: https://doi.org/10.1007/978-3-031-44955-0_37.
https://doi.org/10.1007/978-3-031-44955-0_37
, J., Wdowska, A. & Rudnicki, T. (2008). Betony ultrawysokowartościowe, właściwości, technologie, zastosowanie: Stowarzyszenie Producentow Cementu, Krakow. Retrieved from: https://www.researchgate.net/publication/342720481_Betony_ultrawysokowar....
Switonski, A., Mrozik, L. Piekarski, P. (2004). Creating structure and properties of high performance concrete. University of Science and Technology in Bydgoszcz. Retrieved from: https://depot.ceon.pl/bitstream/handle/123456789/12475/Creating%20struct....
Sanytsky, M., Kropyvnytska, T., Vakhula, O. & Bobetsky, Y. (2024). Nanomodified ultra high-performance fiber reinforced cementitious composites with enhanced operational characteristics. Proceedings of CEE 2023, 438, 362-371. Retrieved from: https://doi.org/10.1007/978-3-031-44955-0_36.
https://doi.org/10.1007/978-3-031-44955-0_36
, R., Gots, V., Rudenko, I., Konstantynovskyi, O. & Lastivka, O. (2018). The efficiency of plasticizing surfactants in alkali-activated cement mortars and concretes. MATEC Web of Conferences 230, 03016. Retrieved from: https://doi.org/10.1051/matecconf/201823003016.
https://doi.org/10.1051/matecconf/201823003016
Nivin, P., Jędrzejewska, A., Varughese, A. & James, J. (2022). Influence of pore structure on corrosion resistance of high performance concrete containing metakaolin. Cement - Wapno - Beton, 27 (5), 302-319. Retrieved from: https://doi.org/10.32047/CWB.2022.27.5.1.
https://doi.org/10.32047/CWB.2022.27.5.1
, M., Lliso-Ferrando, J., Ramón-Zamora, J. & Soto, J. (2021). Corrosion resistance of ultra-high performance fibre- reinforced concrete. Construction and Building Materials 306, 124914. Retrieved from: https://doi.org/10.1016/j.conbuildmat.2021.124914.
https://doi.org/10.1016/j.conbuildmat.2021.124914
, T., Sanytsky, M., Rucińska, T., & Rykhlitska, O. (2019). Development of nanomodified rapid hardening clinker-efficient concretes based on composite Portland cements. Eastern-European Journal of Enterprise Technologies, 6 (102), 38-48. Retrieved from: https://doi.org/10.15587/1729-4061.2019.185111.
https://doi.org/10.15587/1729-4061.2019.185111
Kirakevych, I., Sanytsky, M., Shyiko, O. Kagarlitskiy, R. (2021). Modification of cementitious matrix of rapid-hardening high-performance concretes. Theory and Building Practice. 3 (1), 79-84. Retrieved from: https://doi.org/10.23939/jtbp2021.01.079.
https://doi.org/10.23939/jtbp2021.01.079
Krivenko, P., Petropavlovskyi, O., Kovalchuk, O. (2018). A comparative study on the influence of metakaolin and kaolin additives on properties and structure of the alkali activated slag cement and concrete. Eastern-European Journal of Enterprise Technologies, 6 (91), 33-39. Retrieved from: https://doi.org/10.15587/1729-4061.2018.119624.
https://doi.org/10.15587/1729-4061.2018.119624
Borziak, O., Plugin, A., Chepurna, S., Zavalniy, O. & Dudin, O. (2019). The effect of added finely dispersed calcite on the corrosion resistance of cement compositions. IOP Conf. Series: Materials Science and Engineering, 708, 012080. doi: 10.1088/1757-899X/708/1/012080.
https://doi.org/10.1088/1757-899X/708/1/012080
Rakanta., E., Ioannou, I. & Batis, G. (2015). Mechanical properties and durability performance of reinforced concrete containing fly ash. Construction and Building Materials. 101, 810-817. Retrieved from: https://doi.org/10.1016/j.conbuildmat.2015.10.127.
https://doi.org/10.1016/j.conbuildmat.2015.10.127
Gots, V., Berdnyk, O., Lastivka, O., Maystrenko, A. & Amelina, N. (2023). Corrosion of basalt fiber with titanium dioxide coating in NaOH and Ca(OH)2 solutions. AIP Conf. Proc. 2490, 050010. Retrieved from: https://doi.org/10.1063/5.0122739.
https://doi.org/10.1063/5.0122739
Valcuende, M., Parra, C., Marco, E., Garrido, A., Martínez, E. & Cánoves, J. (2012). Influence of limestone filler and viscosity-modifying admixture on the porous structure of self-compacting concrete. Constr. Build. Mater., 28 (1), 122-128. Retrieved from: https://doi.org/10.1016/j.conbuildmat.2011.07.029.
https://doi.org/10.1016/j.conbuildmat.2011.07.029
Ting, M., Wong, K., Rahman, M. Meheron, S. (2021). Deterioration of marine concrete exposed to wetting-drying action. J. Clean. Prod, 278, 123383. Retrieved from: https://doi.org/10.1016/j.jclepro.2020.123383.
https://doi.org/10.1016/j.jclepro.2020.123383
Sun, Y. & Wu, X. (2022). Two types of corrosion resistant high-performance concrete: ECC and EPS concrete. Advances in Civil Function Structure and Industrial Architecture. Retrieved from: https://www.taylorfrancis.com/chapters/edit/10.1201/9781003305019-38/two....
https://doi.org/10.1201/9781003305019-38
Ivashchyshyn, H., Sanytsky, M., Kropyvnytska, T. & Rusyn, B. (2019). Study of low-emission multicomponent cements with a high content of supplementary cementitious materials. Eastern-European Journal of Enterprise Technologies. 4(6-100), 39-47. Retrieved from: https://doi.org/10.15587/1729-4061.2019.175472.
https://doi.org/10.15587/1729-4061.2019.175472
Haufe, J., Vollpracht, A. & Matschei, T. (2021). Performance test for sulfate resistance of concrete by tensile strength measurements: Determination of test criteria. Crystals, 11 (9), 1018. Retrieved from: https://doi.org/10.3390/cryst11091018.
https://doi.org/10.3390/cryst11091018
Shi, Z., Shi, C., Zhao, R. & Wan, S. (2015). Comparison of alkali-silica reactions in alkali-activated slag and Portland cement mortars. Materials and Structures. 48, 743-751 Retrieved from: https://doi.org/10.1617/s11527-015-0535-4.
https://doi.org/10.1617/s11527-015-0535-4
Looney, T., Leggs, M., Volz, J. & Floyd, R. (2022). Durability and corrosion resistance of ultra-high performance concretes for repair. Construction and Building Materials, 345, 128238. Retrieved from: https://doi.org/10.1016/j.conbuildmat.2022.128238.
https://doi.org/10.1016/j.conbuildmat.2022.128238