Influence of Surfactants on Copper-CNTs Electrodeposition

2021;
: pp. 125 - 131
1
The National Metallurgical Academy of Ukraine
2
Paton Electric Welding Institute of NAS of Ukraine
3
The National Metallurgical Academy of Ukraine

Influence of different types of surfactants on electrodeposition of copper- and carbon-bearing (graphite, carbon nanotubes (CNTs)) composite powder has been experimentally investigated. The size of powder particles decreased, and corrosion resistance increased when surfactants were added. Addition of cationic surfactant CTAB to the electrolyte with simultaneous ultrasonic treatment for CNTs dispersion gives maximum effect.

  1. Pavlenko V., Yas D.: J. Powder Metall. Met. Ceram., 1976, 15, 89. https://doi.org/10.1007/BF00793555
  2. Uk P-H., Chung T-J., Lee H.: J. Ceram. Process. Res., 2017, 18, 440.
  3. Chu Y., Yu G., Hu B. et al.: Adv. Powder Technol., 2014, 25, 477. https://doi.org/10.1016/j.apt.2013.07.003
  4. Chen L., Yu G., Chu Y. et al.: Adv. Powder Technol., 2013, 24, 281. https://doi.org/10.1016/j.apt.2012.07.003
  5. Ajayan P., Schadler L., Braun P. (Eds.): Nanocomposite Science and Technology. Wiley-VCH Verlag GmbH, Weinheim 2003. https://doi.org/10.1002/3527602127
  6. Toth G., Maklin J., Halonen N. et al.: Adv. Mater., 2009, 21, 2054. https://doi.org/10.1002/adma.200802200
  7. Berber S., Kwon Y., Tomanek D.: Phys. Rev. Lett., 2000, 84, 4613. https://doi.org/10.1103/PhysRevLett.84.4613
  8. Jayathilaka W., Chinnappan A., Ramakrishna S.: J. Mater. Chem., 2017, C5, 9209. https://doi.org/10.1039/C7TC02965A
  9. Jiang L., Gao L., Sun J.: J. Colloid Interf. Sci., 2003, 260, 89. https://doi.org/10.1016/S0021-9797(02)00176-5
  10. Moore V., Strano M., Haroz E. et al.: Nano Leters, 2003, 3, 1379. https://doi.org/10.1021/nl034524j
  11. Rastogi R., Kaushal R., Tripathi S. et al.: J. Colloid Interf. Sci., 2008, 328, 421. https://doi.org/10.1016/j.jcis.2008.09.015
  12. Strano M., Moore V., Miller M. et al.: J. Nanosci. Nanotechnol., 2003, 3, 81. https://doi.org/10.1166/jnn.2003.194
  13. Vaisman L., Wagner H., Marom G.: Adv. Colloid Interf. Sci., 2006, 128-130, 37. https://doi.org/10.1016/j.cis.2006.11.007
  14. Schneider M., Weiser M., Dorfler S. et al.: Surg. Eng., 2012, 28, 34. https://doi.org/10.1179/1743294411Y.0000000095
  15.  Arai S., Saito T., Endo M.: J. Electrochem. Soc., 2010, 157, D147. https://doi.org/10.1149/1.3280034
  16. Arai S., Suwa Y., Endo M.: J. Electrochem. Soc., 2011, 158, D49. https://doi.org/10.1149/1.3518414
  17. Ning D., Zhang A., Wu H.: Materials (Basel), 2019, 12, E392. https://doi.org/10.3390/ma12030392
  18. An Z., Toda M., Ono T.: 2016 IEEE 29th Int. Conf. on Micro Electro Mechanical Systems (MEMS). 24-28 Jan. 2016, Shanghai, China. https://doi.org/10.1109/MEMSYS.2016.7421678
  19. Guo H., Zhu H., Lin H., Zhang J.: Colloid Polym. Sci., 2008, 286, 587. https://doi.org/10.1007/ s00396-007-1828-0
  20. Zheng L., Sun J., Chen Q.: Micro Nano Lett., 2017,12, 722. https://doi.org/10.1049/mnl.2017.0317
  21.  Arai S., Endo M.: Electrochem. Commun., 2003, 5, 797. https://doi.org/10.1016/j.elecom.2003.08.002
  22. Tihomirov V.: Peny. Teoriya i Praktika ih Polucheniya i Razrusheniya. Khimia, Moskva 1983.