SYNTHESIS OF RATIONAL CONSTRUCTIVE SOLUTION OF STEEL ROOF TRUSSES

2024;
: 7-16
https://doi.org/10.23939/jtbp2024.01.007
Received: March 06, 2024
Revised: April 06, 2024
Accepted: May 02, 2024
1
Lviv Polytechnic National University, Department of building production
2
Lviv Polytechnic National University, Department of building production
3
Lviv Polytechnic National University, Department of Building Production

The article examines the issue of the occurrence and influence of bending moments on the bearing capacity of a combined steel truss made of rectangular bent-welded profiles. A comparative analysis of technical and economic indicators in terms of material intensity, labor intensity, and cost of traditional-typical and lightweight combined steel trusses was carried out. The paper examines steel trusses of long-span buildings with a span of 30 m. The force graphs (bending moments and axial forces) for various calculation schemes of the combined steel truss are shown. An analysis of the forces in the combined truss for different ways of connecting the lattice to the chords was carried out. The plot of normal stresses along the middle line of the stiffening girder of the combined truss for various calculation schemes is presented. The load-bearing capacity of compressed rods with different connection methods was calculated. According to the research results, an engineering method of taking into account the influence of bending moments is proposed.

Achtziger W. (2007) On simultaneous optimization of truss geometry and topology. StructMultidiscipOptim, 4, 285-304. doi: 10.1007/s00158-006-0092-0
https://doi.org/10.1007/s00158-006-0092-0
Brütting J., Desruelle J., Senatore G., Fivet C. (2019). Design of truss structures through reuse. In Structures. Journal of the international association for shell and spatial structures: j. IASS.  Vol. 18. Pp. 128-137. Elsevier. https://doi.org/10.1016/j.istruc.2018.11.006
https://doi.org/10.1016/j.istruc.2018.11.006
Chilton J. (2000) Space grid structures. Architectural Press, 180 p. https://doi.org/10.4324/9780080498188
https://doi.org/10.4324/9780080498188
European Environment Agency (2010) Material resources and waste- the European environment-state and outlook. Publications Office of the European Union, Luxembourg. https://www.eea.europa.eu/soer/2010/europe/material-resources-and-waste/...
Flager F., Adya A., Haymaker J. and Fischer M., (2014) A bi-level hierarchical method for shape and member sizing optimization of steel truss structures. Computers and Structures, 131, pp. 1-11. https://doi.org/10.1016/j.compstruc.2013.10.004
https://doi.org/10.1016/j.compstruc.2013.10.004
Gasii G. (2020) Testing of the combined structural elements of support of a mine opening. E3S Web of Conferences, 168, 1-28. doi:10.1051/e3sconf/202016800028.
https://doi.org/10.1051/e3sconf/202016800028
He L. and Gilbert M. (2015) Rationalization of trusses generated via layout optimization. StructMultidiscipOptim, 52 (4). 677 - 694 https://doi.org/10.1007/s00158-015-1260-x
https://doi.org/10.1007/s00158-015-1260-x
Hohol M. V. (2018). Tension regulation in steel combined structures: Monograph. (Kyiv: Steel), 222 p.  https://bit.ly/3FBL97l
Hohol М., Gasii G., Pents V., Sydorak D. (2022) Structural - Parametric Synthesis of Steel Combined Trusses. Lecture Notes in Civil Engineering, 181, pp. 163-171. https://www.springerprofessional.de/en/structural-parametric-synthesis-o...
https://doi.org/10.1007/978-3-030-85043-2_16
Hohol M., Kotiv M., Kotsiy Y., Peleshko I., Sydorak D., Hohol Marco (2020) Patent of Ukraine 144193. Kyiv: State Patent Office of Ukraine. base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=271161
Hohol M., Peleshko I., Petrenko O., Sydorak D. (2021). Analysis of calculation regulation methods in steel combined trusses. Theory and Building Practice. 3(1), 64-71. https://doi.org/10.23939/jtbp2021.01.064
https://doi.org/10.23939/jtbp2021.01.064
Li P., Zhao X., Din D., Li X., Zha, Y., Ke L., Zhang X., Jian B. (2023) Optimization Design for Steel Trusses Based on a Genetic Algorithm. Buildings , 13(6), 1-17. https://doi.org/10.3390/buildings13061496
https://doi.org/10.3390/buildings13061496
Oehlers D. J., Bradford M. A. (2013) Composite Steel and Concrete Structures: Fundamental Behavior. Elsevier, 588 p. https://doi.org/10.1016/C2009-0-08012-X
https://doi.org/10.1016/C2009-0-08012-X
Reksowardojo A. P., Senatore G., Smith, I. (2020) Design of Structures That Adapt to Loads through Large Shape Changes. Journal of Structural Engineering, 146, https://doi.org/10.1061/(ASCE)ST.1943-541X.0002604
https://doi.org/10.1061/(ASCE)ST.1943-541X.0002604
Romaswamy G.S., Eekhout M., Suresh G.R. (2002) Analysis, design and construction of steel frames. Thomas Telford Publishing, 242 p. https://www.scribd.com/document/439018298/G-S-Ramaswamy-Octatube-M-Eekho...
https://doi.org/10.1680/adacossf.30145
Ruiz-Teran A, Aparicio A (2010) Developments in under-deck and combined cable-stayed bridges. Bridge Engineering, 163, 67-78. doi: 10.1680/bren.2010.163.2.67
https://doi.org/10.1680/bren.2010.163.2.67
Senatore G., Duffour P. & Winslow P. (2019) Synthesis of minimum energy adaptive structures. StructMultidiscOptim 60, 849-877. https://doi.org/10.1007/s00158-019-02224-8
https://doi.org/10.1007/s00158-019-02224-8
Gogol M., Zygun A., Maksiuta N. (2018) New effective combined steel structures. International Journal of Engineering and Technology. 7(3.2), 343-348. https://www.sciencepubco.com/index.php/ijet/article/view/14432
https://doi.org/10.14419/ijet.v7i3.2.14432
Gogol M., Kropyvnytska T., Galinska T., Hajiyev M. (2020) Ways to Improve the Combined Steel Structures of Coatings. Lecture Notes in Civil Engineering. 73, 53-58. https://www.springerprofessional.de/en/ways-to-improve-the-combined-stee...
https://doi.org/10.1007/978-3-030-42939-3_6
Hohol M., Marushchak U., Peleshko I., Sydorak D. (2022). Rationalization of the Topology of Steel Combined Truss. Safety in Aviation and Space Technologies. Lecture Notes in Mechanical Engineering. P. 97-106. https://doi.org/10.1007/978-3-030-85057-9_9
https://doi.org/10.1007/978-3-030-85057-9_9
Hohol M., Marushchak U., Galinska T., Sydorak D. (2023) Synthesis of rational topology of combined steel trusses. In AIP Conference Proceedings. 2684 (1). https://doi.org/10.1063/5.0121427
https://doi.org/10.1063/5.0121427
Hultman, M. (2010) Weight optimization of steel trusses by a genetic algorithm. Size, shape and topology optimization according to Eurocode. Lund University. Retrieved from http://www.kstr.lth.se/fileadmin/kstr/pdf_files/Exjobb/TVBK-5000_pdf/TVB...
Cavallaro R., Demasi L (2016) Challenges, Ideas, and Innovations of Joined-Wing Configurations: A Concept from the Past, an Opportunity for the Future. Progress in Aerospace Sciences. 87, pp. 1-93. https://doi.org/10.1016/j.paerosci.2016.07.002
https://doi.org/10.1016/j.paerosci.2016.07.002
Weldeyesus, A.G., Gondzio, J., He, L., Gilbert M., Shepherd P. & Tyas A. (2020) Truss geometry and topology optimization with global stability constraints. Structural and Multidisciplinary Optimization. 62, 1721-1737. Doi: https://doi.org/10.1007/s00158-020-02634-z
https://doi.org/10.1007/s00158-020-02634-z
Cazacu R., Grama L. (2014) Steel truss optimization using genetic algorithms and FEA. Procedia Technology. 12, 339-346. https://doi.org/10.1016/j.protcy.2013.12.496.
https://doi.org/10.1016/j.protcy.2013.12.496