This review analyzes key factors contributing to damage in reinforced concrete (RC) structures, including reinforcement corrosion, chemical attacks, cyclic and long-term mechanical loads, and extreme temperature effects. The study highlights crack formation as a primary damage mechanism, leading to structural degradation. Advanced computational modeling techniques, such as finite element analysis, offer valuable insights into crack propagation and corrosion processes but require further refinement. Future research should focus on developing high-performance materials, improving corrosion protection methods, and refining predictive models. Additionally, sustainable rehabilitation techniques and experimental validation of damage mechanisms are essential for enhancing the durability and serviceability of RC structures.
Angst, U. M. (2018). Challenges and opportunities in corrosion of steel in concrete. Materials and Structures, 51(4), 1-20. https://doi.org/10.1617/s11527-017-1131-6
https://doi.org/10.1617/s11527-017-1131-6
Bastidas, D. M., & Bastidas, J. M. (2020). Corrosion of reinforced concrete structures. Frontiers in Materials, 7, 170. https://doi.org/10.3389/fmats.2020.00170
https://doi.org/10.3389/fmats.2020.00170
Bastidas-Arteaga, E., Bressolette, P., Chateauneuf, A., & Sánchez-Silva, M. (2009). Probabilistic lifetime assessment of RC structures under coupled corrosion-fatigue deterioration processes. Structural Safety, 31(1), 84-96. https://doi.org/10.1016/j.strusafe.2008.04.001
https://doi.org/10.1016/j.strusafe.2008.04.001
Bazant, Z. P., & Planas, J. (1998). Fracture and size effect in concrete and other quasibrittle materials. CRC Press. https://doi.org/10.1201/9780203756799
https://doi.org/10.1201/9780203756799
Blikharskyy, Y. (2020). Calculation of damage RC constructions according to deformation model. Theory and Building Practice, 2(2), 99-106. https://doi.org/10.23939/jtbp2020.02.099
https://doi.org/10.23939/jtbp2020.02.099
Blikharskyy, Y. (2021). Experimental results of damaged RC beams. Theory and Building Practice, 3(1), 100-105. https://doi.org/10.23939/jtbp2021.01.100
https://doi.org/10.23939/jtbp2021.01.100
Blikharskyy, Y. Z., & Kopiika, N. S. (2019). Research of damaged reinforced concrete elements, main methods of their restoration and strengthening. Resource-Saving Materials, Structures, Buildings and Structures, 37, 316-322. http://nbuv.gov.ua/UJRN/rmkbs_2019_37_40
Blikharskyy, Y. Z., & Kopiika, N. S. (2021). Comparative analysis of approaches to assessing the reliability of building structures. Ukrainian Journal of Construction and Architecture, 3, 46-55. https://doi.org/10.30838/J.BPSA CEA.2312.010721.46.766
https://doi.org/10.30838/J.BPSACEA.2312.010721.46.766
Blikharskyy, Z. Ya. (2005). Stress-strain state of reinforced concrete structures in an aggressive environment under load (Doctoral dissertation), Kyiv https://uacademic.info/en/document/0505U000494
Bobalo, T., Blikharskyy, Y., Kopiika, N., & Volynets, M. (2019). Serviceability of RC beams reinforced with high strength rebar's and steel plate. Lecture Notes in Civil Engineering, 47, 25-33. https://doi.org/10.1007/978-3-030-27011-7_4
https://doi.org/10.1007/978-3-030-27011-7_4
Broomfield, J. P. (2007). Corrosion of steel in concrete: Understanding, investigation and repair. CRC Press. https://doi.org/10.1201/9781003223016
https://doi.org/10.1201/9781003223016
Chen, F., Li, C. Q., Baji, H., & Ma, B. (2019). Effect of design parameters on microstructure of steel-concrete interface in reinforced concrete. Cement and Concrete Research, 119, 1-10. https://doi.org/10.1016/j.cemconres.2019.01.005
https://doi.org/10.1016/j.cemconres.2019.01.005
Chiu, C. K., Sung, H. F., Chi, K. N., & Hsiao, F. P. (2019). Experimental quantification on the residual seismic capacity of damaged RC column members. International Journal of Concrete Structures and Materials, 13(1), 1-22. https://doi.org/10.1186/s40069-019-0338-z
https://doi.org/10.1186/s40069-019-0338-z
Chrysafi, A. P., Athanasopoulos, N., & Siakavellas, N. J. (2017). Damage detection on composite materials with active thermography and digital image processing. International Journal of Thermal Sciences, 116, 242-253. https://doi.org/10.1016/j.ijthermalsci.2017.02.017
https://doi.org/10.1016/j.ijthermalsci.2017.02.017
Cohen, M., Monteleone, A., & Potapenko, S. (2018). Finite element analysis of intermediate crack debonding in fibre reinforced polymer strengthened reinforced concrete beams. Canadian Journal of Civil Engineering, 45(10), 840-851. https://doi.org/10.1139/cjce-2017-0439
https://doi.org/10.1139/cjce-2017-0439
Corral-Higuera, R., Arredondo-Rea, S. P., Neri-Flores, M. A., Gómez-Soberón, J. M., Calderón, F. A., Castorena-González, J. H., & Almaral-Sánchez, J. L. (2011). Sulfate attack and reinforcement corrosion in concrete with recycled concrete aggregates and supplementary cementing materials. International Journal of Electrochemical Science, 6(3), 613-621. https://doi.org/10.1016/S1452-3981(23)15020-6
https://doi.org/10.1016/S1452-3981(23)15020-6
Ercolani, G. D., Felix, D. H., & Ortega, N. F. (2018). Crack detection in prestressed concrete structures by measuring their natural frequencies. Journal of Civil Structural Health Monitoring, 8, 661-671. https://doi.org/10.1007/s13349-018-0295-2
https://doi.org/10.1007/s13349-018-0295-2
Fagerlund, G. (1977). The significance of critical degrees of saturation at freezing of porous and brittle materials. Durability of Building Materials, 2(3), 217-225. https://lup.lub.lu.se/search/files/4759429/1553671.pdf
Fatemi, A., & Yang, L. (1998). Cumulative fatigue damage and life prediction theories: A survey of the state of the art for homogeneous materials. International Journal of Fatigue, 20(1), 9-34. https://doi.org/10.1016/S0142-1123(97)00081-9
https://doi.org/10.1016/S0142-1123(97)00081-9
Fu, C., Jin, N., Ye, H., Jin, X., & Dai, W. (2017). Corrosion characteristics of a 4-year naturally corroded reinforced concrete beam with load-induced transverse cracks. Corrosion Science, 117, 11-23. https://doi.org/10.1016/j.corsci.2017.01.002
https://doi.org/10.1016/j.corsci.2017.01.002
Fursa, T. V., Dann, D. D., Petrov, M. V., & Lykov, A. E. (2017). Evaluation of damage in concrete under uniaxial compression by measuring electric response to mechanical impact. Journal of Nondestructive Evaluation, 36(2), Article 30. https://doi.org/10.1007/s10921-017-0411-y
https://doi.org/10.1007/s10921-017-0411-y
Gollop, R. S., & Taylor, H. F. W. (1992). Microstructural and microanalytical studies of sulfate attack. I. Ordinary Portland cement paste. Cement and Concrete Research, 22(6), 1027-1038. https://doi.org/10.1016/0008-8846(92)90033-R
https://doi.org/10.1016/0008-8846(92)90033-R
Golos, K., & Ellyin, F. (1987). Generalization of cumulative damage criterion to multilevel cyclic loading. Theoretical and Applied Fracture Mechanics, 7(3), 169-176. https://doi.org/10.1016/0167-8442(87)90032-2
https://doi.org/10.1016/0167-8442(87)90032-2
Gu, X., Guo, H., Zhou, B., Zhang, W., & Jiang, C. (2018). Corrosion non-uniformity of steel bars and reliability of corroded RC beams. Engineering Structures, 167, 188-202. https://doi.org/10.1016/j.engstruct.2018.04.020
https://doi.org/10.1016/j.engstruct.2018.04.020
Hager, I. (2013). Behaviour of cement concrete at high temperature. Bulletin of the Polish Academy of Sciences: Technical Sciences, 61, 145-154. http://psjd.icm.edu.pl/psjd/element/bwmeta1.element.oai-journals-pan-pl-...
https://doi.org/10.2478/bpasts-2013-0013
Hibner, D. R. (2017). Residual axial capacity of fire exposed reinforced concrete columns (Master's thesis). Michigan State University. https://www.proquest.com/openview/928d94f115983c0c02629b4754e7710c/1?pq-...
Hlavička, V., Biró, A., Tóth, B., & Lublóy, É. (2024). Fire behaviour of hollow core slabs. Construction and Building Materials, 411, Article 134143. https://doi.org/10.1016/j.conbuildmat.2023.134143
https://doi.org/10.1016/j.conbuildmat.2023.134143
James, A., Bazarchi, E., Chiniforush, A. A., Aghdam, P. P., Hosseini, M. R., Akbarnezhad, A., & Ghodoosi, F. (2019). Rebar corrosion detection, protection, and rehabilitation of reinforced concrete structures in coastal environments: A review. Construction and Building Materials, 224, 1026-1039. https://doi.org/10.1016/j.conbuildmat.2019.07.250
https://doi.org/10.1016/j.conbuildmat.2019.07.250
Karpiuk, V., Somina, Y., & Maistrenko, O. (2020). Engineering method of calculation of beam structures inclined sections based on the fatigue fracture model. In Proceedings of CEE 2019: Advances in Resource-saving Technologies and Materials in Civil and Environmental Engineering 18 (pp. 135-144). Springer International Publishing. https://doi.org/10.1007/978-3-030-27011-7_17
https://doi.org/10.1007/978-3-030-27011-7_17
Khiem, N. T., & Toan, L. K. (2014). A novel method for crack detection in beam-like structures by measurements of natural frequencies. Journal of Sound and Vibration, 333(18), 4084-4103. https://doi.org/10.1016/j.jsv.2014.04.031
https://doi.org/10.1016/j.jsv.2014.04.031
Klymenko, Y. V., & Polyanskyi, K. V. (2019). Experimental studies of the stress-strain state of damaged RC beams. Bulletin of Odessa State Academy of Civil Engineering and Architecture, 76, 24-30. http://nbuv.gov.ua/UJRN/Vodaba_2019_76_5
https://doi.org/10.31650/2415-377X-2019-76-24-30
Kwan, A. K. H., & Ma, F. J. (2016). Crack width analysis of reinforced concrete under direct tension by finite element method and crack queuing algorithm. Engineering Structures, 126, 618-627. https://doi.org/10.1016/j.engstruct.2016.08.027
https://doi.org/10.1016/j.engstruct.2016.08.027
Lee, S., Kim, T., Suh, K., Bae, Y., Kim, H., & Lee, J. (2016). Analysis of repair times of marine reinforced-concrete structures considering shape effects and domain discontinuity. Transactions of the ASABE, 59(3), 975-982. https://doi.org/10.13031/trans.59.11342
https://doi.org/10.13031/trans.59.11342
Lin, S. H. (1990). Chloride diffusion in a porous concrete slab. Corrosion (USA), 46(12), 961-967. https://doi.org/10.5006/1.3585052
https://doi.org/10.5006/1.3585052
Mahmoodian, M. (2020). Structural reliability assessment of corroded offshore pipelines. Australian Journal of Civil Engineering, 1-11. https://doi.org/10.1080/14488353.2020.1816639
https://doi.org/10.1080/14488353.2020.1816639
Malumbela, G., Alexander, M., & Moyo, P. (2010). Variation of steel loss and its effect on the ultimate flexural capacity of RC beams corroded and repaired under load. Construction and Building Materials, 24(6), 1051-1059. https://doi.org/10.1016/j.conbuildmat.2009.11.012
https://doi.org/10.1016/j.conbuildmat.2009.11.012
Meier, U. (1995). Strengthening of structures using carbon fibre/epoxy composites. Construction and Building Materials, 9(6), 341-351. https://doi.org/10.1016/0950-0618(95)00071-2
https://doi.org/10.1016/0950-0618(95)00071-2
Mundra, S., Criado, M., Bernal, S. A., & Provis, J. L. (2017). Chloride-induced corrosion of steel rebars in simulated pore solutions of alkali-activated concretes. Cement and Concrete Research, 100, 385-397. https://doi.org/10.1016/j.cemconres.2017.08.006
https://doi.org/10.1016/j.cemconres.2017.08.006
Nuguzhinov, Z., Vatin, N., Bakirov, Z., Khabidolda, O., Zholmagambetov, S., & Kurokhtina, I. (2020). Stress-strain state of bending reinforced beams with cracks. Magazine of Civil Engineering, 96(5), 1-15. https://doi.org/10.18720/MCE.97.1
Oehlers, D. J., & Seracino, R. (2004). Design of FRP and steel plated RC structures: Retrofitting beams and slabs for strength, stiffness and ductility. CRC Press. https://books.google.com.ua/books?hl=uk&lr=&id=NuzKo34NRYkC&oi=fnd&pg=PP1
Otieno, M. B., Beushausen, H. D., & Alexander, M. G. (2011). Modelling corrosion propagation in reinforced concrete structures - A critical review. Cement and Concrete Composites, 33(2), 240-245. https://doi.org/10.1016/j.cemconcomp.2010.11.002
https://doi.org/10.1016/j.cemconcomp.2010.11.002
Patel, J., & Peralta, P. (2017). Characterization of deformation localization mechanisms in polymer matrix composites: A digital image correlation study. In International Digital Imaging Correlation Society. Springer, Cham. (pp. 243-246). https://doi.org/10.1007/978-3-319-51439-0_58
https://doi.org/10.1007/978-3-319-51439-0_58
Peng, H., Chen, Z., Liu, M., Zhao, Y., Fu, W., Liu, J., & Tan, X. (2024). Study on the effect of additives on the performance of cement-based composite anti-corrosion coatings for steel bars in prefabricated construction. Materials, 17(9), 1996. https://doi.org/10.3390/ma17091996
https://doi.org/10.3390/ma17091996
Pozzer, S., Rezazadeh Azar, E., Dalla Rosa, F., & Chamberlain Pravia, Z. M. (2021). Semantic segmentation of defects in infrared thermographic images of highly damaged concrete structures. Journal of Performance of Constructed Facilities, 35(1), 04020131. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001541
https://doi.org/10.1061/(ASCE)CF.1943-5509.0001541
Rezaie, A., Achanta, R., Godio, M., & Beyer, K. (2020). Comparison of crack segmentation using digital image correlation measurements and deep learning. Construction and Building Materials, 261, 120474. https://doi.org/10.1016/j.conbuildmat.2020.120474
https://doi.org/10.1016/j.conbuildmat.2020.120474
RILEM Technical Committees. (1991). Damage classification of concrete structures. Materials and Structures / Matériaux et Constructions, 24, 253-259.
https://doi.org/10.1007/BF02472079
Santhanam, M., Cohen, M. D., & Olek, J. (2002). Sulfate attack research-whither now? Cement and Concrete Research, 32(6), 831-836. https://doi.org/10.1016/S0008-8846(01)00510-5
https://doi.org/10.1016/S0008-8846(01)00510-5
Savitskyi, M. V. (2003). Fundamentals of reliability calculation, durability, and constructive-technological design of reinforced concrete structures in aggressive environments. Collection of Scientific Papers: Building Structures, 2(59), 235-240.
Smith, R. W. (2007). The effects of corrosion on the performance of reinforced concrete beams (Master's thesis). Ryerson University. https://rshare.library.torontomu.ca/articles/thesis/The_effects_of_corro...
Song, J., Li, Y., Xu, W., Liu, H., & Lu, Y. (2019). Inexpensive and non-fluorinated superhydrophobic concrete coating for anti-icing and anti-corrosion. Journal of Colloid and Interface Science, 541, 86-92. https://doi.org/10.1016/j.jcis.2019.01.014
https://doi.org/10.1016/j.jcis.2019.01.014
Taylor, H. F. W., Famy, C., & Scrivener, K. L. (2001). Delayed ettringite formation. Cement and Concrete Research, 31(5), 683-693. https://doi.org/10.1016/S0008-8846(01)00466-5
https://doi.org/10.1016/S0008-8846(01)00466-5
Torres-Acosta, A. A., Navarro-Gutierrez, S., & Terán-Guillén, J. (2007). Residual flexure capacity of corroded reinforced concrete beams. Engineering Structures, 29(6), 1145-1152. https://doi.org/10.1016/j.engstruct.2006.07.018
https://doi.org/10.1016/j.engstruct.2006.07.018
Triantafillou, T. C. (1998). Shear strengthening of reinforced concrete beams using epoxy-bonded FRP composites. ACI Structural Journal, 95(2), 107-115. https://www.researchgate.net/profile/Thanasis-Triantafillou/publication/...
https://doi.org/10.14359/531
Vatulia, G., Orel, Y., & Kovalov, M. (2014). Carrying capacity definition of steel-concrete beams with external reinforcement under the fire impact. Applied Mechanics and Materials, 617, 167-170. https://doi.org/10.4028/www.scientific.net/AMM.617.167
https://doi.org/10.4028/www.scientific.net/AMM.617.167
Verma, S. K., Bhadauria, S. S., & Akhtar, S. (2014). Probabilistic evaluation of service life for reinforced concrete structures. Chinese Journal of Engineering, 2014, 1-8. https://doi.org/10.1155/2014/648438
https://doi.org/10.1155/2014/648438
Voskobiinyk, O. P. (2010). Typological comparison of defects and damages of reinforced concrete, metal, and composite beam structures. Bulletin of Lviv Polytechnic National University, 662, 97-103.
Wang, Y. H., Nie, J. G., & Cai, C. S. (2013). Numerical modeling on concrete structures and steel-concrete composite frame structures. Composites Part B: Engineering, 51, 58-67. https://doi.org/10.1016/j.compositesb.2013.02.035
https://doi.org/10.1016/j.compositesb.2013.02.035
Xu, F., Xiao, Y., Wang, S., Li, W., Liu, W., & Du, D. (2018). Numerical model for corrosion rate of steel reinforcement in cracked reinforced concrete structure. Construction and Building Materials, 180, 55-679. https://doi.org/10.1016/j.conbuildmat.2018.05.215
https://doi.org/10.1016/j.conbuildmat.2018.05.215
Ye, H., Tian, Y., Jin, N., Jin, X., & Fu, C. (2013). Influence of cracking on chloride diffusivity and moisture influential depth in concrete subjected to simulated environmental conditions. Construction and Building Materials, 47, 66-79. https://doi.org/10.1016/j.conbuildmat.2013.04.024
https://doi.org/10.1016/j.conbuildmat.2013.04.024
Yuan, S., Zhao, X., Jin, Z., Zhao, Q., Fan, L., Deng, J., & Hou, B. (2024). Design and realization of versatile durable fluorine-free anti-corrosive coating with robust superhydrophobicity. Electrochimica Acta, 495, Article 144428. https://doi.org/10.1016/j.electacta.2024.144428
https://doi.org/10.1016/j.electacta.2024.144428
Zhao, L., Wang, J., Gao, P., & Yuan, Y. (2023). Experimental study on the corrosion characteristics of steel bars in concrete considering the effects of multiple factors. Case Studies in Construction Materials, 20, Article e02706. https://doi.org/10.1016/j.cscm.2023.e02706
https://doi.org/10.1016/j.cscm.2023.e02706
Zhou, H., Tian, X. Q., Wang, Y. S., Lin, H. L., & Chen, H. H. (2024). Experimental investigation of damage and failure modes in stirrupless reinforced concrete beams under varied thermal-mechanical loadings. Journal of Structural Engineering, 150(3), Article 04023240. https://doi.org/10.1061/JSENDH.STENG-12990
https://doi.org/10.1061/JSENDH.STENG-12990