frequency-regulated drive

Mathematical modeling of frequency-controlled electric drive with dual-winding induction machine considering spatial harmonics

Mathematical modeling of frequency-controlled dual-winding induction electric drives typically involves using mathematical circuit models to investigate transient and steady-state modes. Such models often disregard spatial harmonics. Spatial harmonics in machines refer to the harmonics of the distribution of the winding function within the machine stator slots. Mathematical models based on the method of finite element analysis are primarily used to study the influence of spatial harmonics on the stator current and electromagnetic torque of dual-winding machines.

Dual-motor induction frequency-regulated electric drive with improwed electromagnetic and electromechanical compatibility

Dual-motor induction frequency-regulated electric drive is used as an alternative to single-motor electric drive in case where there are difficulties in implementing an individual drive which are associated with the mechanical-transmission implementation. Dual-motor electric drive provides movement of traction mechanisms, working bodies of electric vehicles. Single- or dual-voltage source inverters with pulse-width modulation are used to power two induction motors.