Mathematical modeling of frequency-controlled dual-winding induction electric drives typically involves using mathematical circuit models to investigate transient and steady-state modes. Such models often disregard spatial harmonics. Spatial harmonics in machines refer to the harmonics of the distribution of the winding function within the machine stator slots. Mathematical models based on the method of finite element analysis are primarily used to study the influence of spatial harmonics on the stator current and electromagnetic torque of dual-winding machines. However, these models only allow the study of steady-state electromagnetic processes in dual-winding machines. Therefore, developing a circular mathematical model for frequency-controlled dual-winding electric drives that accounts for spatial harmonics is a pertinent scientific task.

The article proposes a method for considering spatial harmonics of the magnetomotive force in dual-winding machines within the circular mathematical model of frequency-controlled electric drives. This is achieved by incorporating harmonic components of the magnetomotive force into the machine's magnetizing inductance.

Mathematical modeling of frequency-controlled electric drives with dual-winding machines demonstrated the presence of low-frequency harmonics in the stator currents and, consequently, in the electromagnetic torque. These harmonics are influenced by spatial harmonics in the distribution of the winding function within the stator slots and time harmonics stemming from the power supply of the machine by six-step voltage inverters.

Harmonic analysis of the stator current and electromagnetic torque of the dual-winding machine, supplied by two six-step voltage inverters using mathematical models accounting for spatial harmonics and without such accounting, reveals that the defining factors for shaping the stator current and machine torque curves, as well as the input current of the voltage inverters, are the time harmonics of the power supply system.

*Shamsi**-**Nejad**M**.-**A**.,**Nahid**-**Mobarakeh**B**.,**Pierfederici**S**.,**Meibody**-**Tabar**F**.,**Fault**Tolerant**and**Minimum**Loss**Control**of**Double**-**Star**Synchronous**Machines**Under**Open**Phase**Conditions**,**in**IEEE**Transactions**on**Industrial**Electronics**,**vol**. 55,**no**. 5,**pp**.**1956-1965,**May**2008,**doi**:**10.1109/**TIE**.2008.918485. відсутність просторових гармонік**Alcharea**R**.,**Nahidmobarakeh**B**.,**Baghli**L**.,**Betin**F**.,**Capolino**G**.**A**.,**Decoupling**Modeling**and**Control**of**Six**-**Phase**Induction**Machines**Under**Open**Phase**Fault**Conditions**,**IECON**2006 - 32**nd**Annual**Conference**on**IEEE**Industrial**Electronics**,**Paris**,**France**, 2006,**pp**.**5101-5106,**doi**: 10.1109/**IECON**.2006.348007. відсутність просторових гармонік**Levi**E**.**Multiphase**Electric**Machines**for**Variable**-**Speed**Applications**,**IEEE**Transactions**on**Industrial**Electronics**,**vol**. 55,**no**. 5,**pp**.**1893-1909,**May**2008,**doi**:**10.1109/**TIE**.2008.918488.**Bojoi**R**.,**Farina**F**.,**Profumo**F**.,**Tenconi**A**.**Dual**‐**Three**Phase**Induction**Machine**Drives**Control**—**A**Survey**.**IEEJ**Trans**.**Ind**.**Appl**. 2006, 126, 420–429.**https://doi.org/10.1541/ieejias.126.420**.**Munim**W**.**N**.**W**.**A**.,**Duran**M**.**J**.,**Che**H**.**S**.,**Berm**ú**dez**M**.,**Gonz**á**lez**-**Prieto**I**.,**Rahim**N**.**A**.,**A**Unified**Analysis**of**the**Fault**Tolerance**Capability**in**Six**-**Phase**Induction**Motor**Drives**,**IEEE**Transactions**on**Power**Electronics**,**vol**. 32,**no**. 10,**pp**.**7824-7836,**Oct**. 2017,**doi**: 10.1109/**TPEL**.2016.2632118.**Che**H**.**S**.,**Duran**M**.,**Levi**E**.,**Jones**M**.,**Hew**W**.**P**.,**Rahim**N**.**A**.**Post**-**fault**operation**of**an**asymmetrical**six**-**phase**induction**machine**with**single**and**two**isolated**neutral**points**, 2013**IEEE**Energy**Conversion**Congress**and**Exposition**,**Denver**,**CO**,**USA**, 2013,**pp**.**1131-1138,**doi**:**10.1109/**ECCE**.2013.6646832.**Duran**M**.**J**.,**Gonzalez**Prieto**I**.,**Bermudez**M**.,**Barrero**F**.,**Guzman**H**.,**Arahal**M**.**R**.**Optimal**Fault**-**Tolerant**Control**of**Six**-**Phase**Induction**Motor**Drives**With**Parallel**Converters**,**IEEE**Transactions**on**Industrial**Electronics**,**vol**. 63,**no**. 1,**pp**.**629-640,**Jan**.**2016,**doi**: 10.1109/**TIE**.2015.2461516.**Gonzalez**I**.,**Duran**M**.**J**.,**Che**H**.**S**.,**Levi**E**.,**Barrero**F**.**Fault**-**tolerant**control**of**six**-**phase**induction**generators**in**wind**energy**conversion**systems**with**series**-**parallel**machine**-**side**converters**,**IECON**2013 - 39**th**Annual**Conference**of**the**IEEE**Industrial**Electronics**Society**,**Vienna**,**Austria**, 2013,**pp**.**5276-5281,**doi**: 10.1109/**IECON**.2013.6699993.**Kutsyk**A**.,**Korkosz**M**.,**Semeniuk**M**.,**Nowak**M**.**An**Influence**of**Spatial**Harmonics**on**an**Electromagnetic**Torque**of**a**Symmetrical**Six**-**Phase**Induction**Machine**.**Energies**.**vol**. 16,**no**.9, 3813 (2023).**DOI**:10.3390/**en**16093813.**Kindl**V**.,**Cermak**R**.,**Ferkova**Z**.,**Skala**B**.**Review**of**Time**and**Space**Harmonics**in**Multi**-**Phase**Induction**Machine**.**Energies**,**vol**. 13, 496 (2020).**DOI**:10.3390/**en**13020496.**Mezani**S**.,**Laporte**B**.,**Takorabet**N**.**Complex**finite**element**computation**of**induction**motors**with**consideration**of**space**harmonics**,**IEEE**International**Electric**Machines**and**Drives**Conference**, 2003.**IEMDC**'03.,**Madison**,**WI**,**USA**, 2003,**pp**.**264-268**vol**.1,**doi**: 10.1109/**IEMDC**.2003.1211273.**Oliveira**F**.**T**.,**Donsion**M**.**P**.**A**finite**element**model**of**an**induction**motor**considering**rotor**skew**and**harmonics**.**Renewable**Energy**&**Power**Quality**Journal**.**vol**.15.**pp**.119-122. (2017)**doi**:10.24084/**repqj**15.240.**Carbonieri**M**.,**Bianchi**N**.,**Alberti**L**.**Induction**Motor**Mapping**Using**Rotor**Field**-**Oriented**Analysis**Technique**, 2019**IEEE**Energy**Conversion**Congress**and**Exposition**(**ECCE**),**Baltimore**,**MD**,**USA**, 2019,**pp**.**2321- 2328,**doi**: 10.1109/**ECCE**.2019.8912787.**Leonardo**L**.**D**.,**Popescu**M**.,**Tursini**M**.,**Parasiliti**F**.,**Carbonieri**,**M**.**Transient**Modeling**of**Induction**Motors**considering**Space**Harmonics**,**2020**International**Conference**on**Electrical**Machines**(**ICEM**),**Gothenburg**,**Sweden**, 2020,**pp**. 2553-2559,**doi**: 10.1109/**ICEM**49940.2020.9271007.**Plakhtyna**O**.,**Kutsyk**A**.,**Semeniuk**M**.**Real**-**Time**Models**of**Electromechanical**Power**Systems**,**Based**on**the**Method**of**Average**Voltages**in**Integration**Step**and**Their**Computer**Application**.**Energies**.**vol**. 13,**no**.9, 2263 (2020).**DOI**:10.3390/**en**13092263.**Plakhtyna**O**.,**Kutsyk**A**.,**Semeniuk**M**.,**Kuznyetsov**O**.**Object**-**oriented**program**environment**for**electromechanical**systems**analysis**based**on**the**method**of**average**voltages**on**integration**step**,"**2017 18**th**International**Conference**on**Computational**Problems**of**Electrical**Engineering**(**CPEE**),**Kutna**Hora**,**Czech**Republic**, 2017,**pp**. 1-4,**doi**:**10.1109/**CPEE**.2017.8093074.*