мобільний робот

Analysis of kinematic characteristics of a mobile caterpillar robot with a SCARA-type manipulator

Automation and robotization of various production and technological processes in many industries is one of the leading trends in the development of modern society. Industrial robots have recently become quite widespread, and it is almost impossible to imagine any modern production in the fields of mechanical engineering (machine building), instrumentation, pharmaceuticals, food, chemical industries, etc., without robotic complexes. Over the past few decades, another area of robotics has emerged: autonomous mobile robots.

A MODEL FOR IMPROVING THE STRENGTH CHARACTERISTICS OF THE ELECTROMECHANICAL DRIVE OF A MOBILE ROBOT

Mobile robots are increasingly used in the most diverse spheres of human activities; accordingly, it is essential to ensure their reliable functioning, which in turn determines efficiency. Using appropriate calculations during design, it is possible to increase reliability and reduce the metal consumption of the machine samples being created. It is crucial that such calculations consider the loading modes in which the vehicle is used.

Modelling and simulation of pneumatic system operation of mobile robot

Problem statement. Mobile robots are currently of significant interest among researchers and designers all over the world. One of the prospective drives of such robots is equipped by a pneumatically operated orthogonal system. The processes of development and improvement of orthogonal walking robots are significantly constrained because of the lack of an open-access comprehensive scientific and theoretical framework for calculating and designing of the energy-efficient and environmental-friendly pneumatic walking drives.

Design and operational peculiarities of four-degree-of-freedom double-legged robot with pneumatic drive and turning mechanism

Problem statement. Mobile robots are of significant interest among scientists and designers during the last several decades. One of the prospective drives of such robots is based on pneumatically operated walking (stepping) system with no use of electric, heat, magnetic or other types of energy. This allows the use of pneumatically-driven robots in the cases when the use of other energy sources is prohibited (e.g., in some gaseous or fluid mediums).

Structural and kinematic analysis of pantograph-type manipulator with three degrees of freedom

Problem statement. The processes of development and improvement of autonomous mobile robots are significantly constrained because of the lack of an open-access comprehensive scientific and theoretical framework for calculating and designing of autonomous mobile robotic systems Purpose. The main objective of the paper consists in carrying out kinematic analysis and motion simulation of pantograph-type manipulator with three degrees of freedom. Methodology.