нейронна мережа

Algorithmic and software means of handwritten symbols recognition.

In this article is considered the algorithm of logistic regression and construction of the neural network for the recognition of handwritten symbols in the image. Examples of implementation of two approaches for solving the problem of numerical recognition are given. The efficiency of using a neural network, as the provision of the most reliable recognition results, is explored.

DEPENDENCE OF TEMPERATURE VALUE PREDICTION ERROR BY NEURAL NETWORKS ON ADC RESOLUTION

Current article describes the results of the study of the error of temperature values prediction using neural networks. In the introduction, the authors consider previous research pointing out problems that arise during measuring the high temperatures. To solve these problems the neural networks applies. The formula for temperature transition process is derived.

Метод каскадного застосування компресуючої нейронної мережі та методів контекстного моделювання

A variant of consistent application of the compressive neural network and context modeling techniques for efficient data compression, including images and audio signals is being viewed. The method is based on the representation of intermediate storage archive in a fixedpoint format and provides improved performance of compression coefficient and quality of primary data reproduction.

Neural networks as a tool for the temperature value prediction using transition process

The present article considers neural networks as a tool for the temperature prediction using transition process. The authors emphasize the need to measure high temperatures in technological processes and indicate problems encountered on this way. The method proposed to solve this problem is neural networks application.

Temperature value prediction errors using neural networks and ideal transition process

The present article describes the results of the study of the prediction error of temperature values using neural networks. In the introduction, the authors point out problems that arise (come up) during the measurement of high temperatures. The method proposed to solve these problems is neural networks application. At the very beginning the authors present a neural networks classification based on their architecture (feedforward neural networks, recurrent neural networks and completely linked neural networks were specially highlighted).

Data classification of spectrum analysis using neural network

This article provides the comparison of libraries neural networks. Based on this analysis was determined to develop a neural network for classification of spectra based on Encog library, because it implemented many components and gives the best result with a small number of items for training. Showed the architecture of neural networks for data classification of spectral analysis.

Критерії вибору архітектури нейронної мережі для розв'язання задач з захисту інформації

Запропоновано методи і критерії оптимізації архітектури нейронної мережі, призначеної для розв’язання актуальних задач з захисту інформації в комп’ютерних системах та мережах. Наведено приклади оптимізації архітектури нейронної мережі, призначеної для виявлення комп’ютерних вірусів.