нейронні мережі

Acquisition and Processing of Data in CPS for Remote Monitoring of the Human functional State

Data acquisition and processing in cyber-physical system for remote monitoring of the human functional state have been considered in the paper. The data processing steps, strategies for multi-step forecasting evaluation metrics and machine learning algorithms to be implemented have been analysed and described. What is important, this way it will be possible to track the condition of the sick and response to the health changes in advance.

COMPONENTS OF HARDWARE NEURAL NETWORKS FOR COORDINATED PARALLEL-VERTICAL DATA PROCESSING IN REAL TIME

It is shown that for the pro­ces­sing of in­tensi­ve da­ta flows in in­dustry (ma­na­ge­ment of techno­lo­gi­cal pro­ces­ses and complex ob­jects), energy (op­ti­mi­za­ti­on of lo­ad in po­wer grids), mi­li­tary af­fa­irs (techni­cal vi­si­on, mo­bi­le ro­bot traf­fic control, cryptog­raphic da­ta pro­tec­ti­on), transport (traf­fic ma­na­ge­ment and en­gi­ne), me­di­ci­ne (di­se­ase di­ag­no­sis) and instru­men­ta­ti­on (pat­tern re­cog­ni­ti­on and control op­ti­mi­za­ti­on) the re­al-ti­me hardwa­re neu­ral net­works with high ef­fi­ci­ency of eq­uipment use sho­uld be appli­ed.

Evolution of Artificial Intelligence on the Background of the Progress in Computer Sciences and Engineering (Review of the Monograph: Mainzer, K. (2020). Artificial Intelligence – When Do Machines Take Over? Berlin, Heidelberg: Springer)

The review examines the content and main problems of the English-language monograph of the German scientist and philosopher, President of the European Academy of Sciences and Arts, founder of the Munich Center for Social Technologies (MCTS), Honorary Professor of the Technical University of Munich, Professor of Mathematics and Natural Sciences at the Univercity of Tübingen Klaus Mainzer.

Зменшення кількості хибних викликів під час розв’язання задачі детектування полум'я у відеопотоці з використанням глибоких згорткових нейронних мереж

In this paper, we develop a new approach for detecting fire in images based on convolutional neural networks. Cascade structure, which provides improved efficiency of recognition in images with low resolution and objects that can visually resemble flames, was proposed. We have performed an experimental comparison with the modern method of objects detecting Faster R-CNN. As a result of the experiments, it was found that performance of fire recognition improved on average by 20%.

Дослідження та аналіз методів забезпечення надвисокої роздільної здатності зображень на основі машинного навчання

In this article the methods of image superresolution based on machine learning are
investigated. The work of different groups of these methods are analyzed. Basic features of this
methods are describing. On the basis of practical experiments comparative analysis (by the
criterion PSNR) of the superresolution methods in the case of one input image from different
classes were conducted. Experimentally found that the best results are obtained in case of
using the method based on the convolutional neural network. Despite the requirement on the

Методи спектроскопії та обробка даних спектрального аналізу

This article provides an analysis of modern methods of spectroscopy in medicine, examined their classification. Conducted a review of portable spectroscopic systems, analysis of the advantages and disadvantages of their use. Analysis of components for spectroscopic analysis. Review of methods of the spectrum classification. Brought a conceptual diagram of processing the received data and its classification. Review of applications portable spectroscopic systems.

Neural networks as a means of improving the metrological characteristics of metal structures, taking interphase layers into account

The problem of inspection, control of parameters and diagnostics of the state of surface metal layers of underground pipelines with consideration of influence of corrosive environment is considered.

Моделювання повнозв'язної нейронної мережі з використанням технології CUDA

Розглянуто задачу істотного підвищення продуктивності обчислювальних систем за рахунок використання сучасних апаратних засобів, таких як графічний процесор загального призначення. Описано відповідну програмну технологію CUDA і проаналізо- вано її ключові особливості, які суттєво впливають на продуктивність. На основі проведеного аналізу вибрана модель нейронної мережі та описано підхід до її реалізації. Наведено порівняльний аналіз реалізацій нейронної мережі на центральному та графічному процесорі, а також вплив деяких параметрів мережі на продуктивність.