Рекомендаційні системи

APPLICATION OF MACHINE LEARNING FOR USER SENTIMENT ANALYSIS IN INFORMATION AND COMMUNICATION SYSTEMS

The article examines modern methods of applying machine learning and recommendation systems for sentiment analysis of users in information and communication environments. Social networks and digital platforms have become important sources of public opinion, generating large volumes of textual data daily. Traditional analysis methods, such as lexical approaches or classical machine learning algorithms, have limitations in detecting context, sarcasm, slang, and emotional nuances in the text. This complicates the accurate identification of user emotions and socially significant topics.

Recommendation Systems in E-Commerce Applications

Nowadays, there are more and more web applications of all kinds. Each of them solves a specific problem and makes life easier for its users. Web applications come in many different types: from a platform for learning courses and watching movies to an online store selling goods. The best systems are those that make things as easy as possible for the user, behave like old friends who know the behavior and tastes of their users and can predict their next move.

Information Technology Intelligent Search of Content in E-commerce Systems

The article describes the process of developing intelligent search technology for content for the implementation of the module of e-commerce systems for forming a list of recommendations for regular users. Intelligent search of content is based on methods of linguistic analysis, modern algorithms for parsing and finding words, and recommendations based on user preferences.

Information system of feedback monitoring in social networks for the formation of recommendations for the purchase of goods

This paper describes an information system for monitoring and analyzing reviews on social networks to form recommendations for the purchase of goods. This system is designed to be used by customers to speed up and facilitate the search for the necessary products on e-commerce resources. Successful selection of a quality product according to the desired criteria is extremely important, as it saves search time and customer money. Analyzing comments on the network, the information system recommends the product if there is a preponderance of positive feedback on it.

MATRIX FACTORIZATION OF BIG DATA IN THE INDUSTRIAL SYSTEMS

The creation of new technologies and their implementation in various fields necessitated Big Data processing and storage. In industrial systems, modernization means the use of a large number of smart devices that perform specialized functions. Data from such devices are used to control the system and automate production processes. A change in the parameters of individual components of the manufacturing system may indicate the need to adjust the global management strategy. The intelligent industrial systems main characteristics were defined in the paper.

Some methods in software development recommendation systems

This article analyzes the current state of the models and methods of building recommendation systems. The basic classes of problems that solve the recommendation system are highlighted. The features of the method collaborative filtering are shown. Developed a method for calculating the similarity coefficients, taking into account the sparseness of ratings vectors of goods and people.