Fuzzy Model for Recommender Systems

2014;
: pp. 64 – 68
Authors: 

Stekh Y., Lobur M., Artsibasov V., Chystjak V.

Lviv Polytechnic National University, CAD Departament

The paper analyzes the current state of development and application of recommendation systems, models and methods of construction of recommendation systems. It is shown that the most widely used method came into collaborative filtering. The method of fuzzy clustering is developed, which improves the accuracy of predicting ratings of products.

1. Cooley R., Mobasher B., J. Srivastava J. Data Preparation for Mining World Wide Web Browsing Patterns // Knowl. and Information Syst. – Vol. 1. – Р. 5–32, 1999. 2. Cosley D., Lawrence S., Pennock D. M., REFEREE: An Open Framework for Practical Testing of Recommender Systems using Researchindex, in Proc. 28th Int. Conf. on Very Large Data Bases. – Р. 35–46, 2002. 3. Demir G. N., Uyar S., S., Gündüz-Ögüdücü S. Multiobjective Evolutionary Clustering of Web User Sessions: A Case Study in Web Page Recommendation // Soft Comput. – Vol. 14. – Р. 579–597, 2010. 4. Dempster A. P., Laird N. M., Rubin D. B., Maximum Likelihood from Incomplete Data via the EM Algorithm // J. Royal Statistical Society, Series B. – Vol. 39. – Р. 1–38, 1977. 20. Deshpande M., Karypis G., Item-Based Top-N Recommendation Algorithms // ACM Trans. Information Syst. – Vol. 22. – Р. 143–177, 2004. 21. Driga A, Lu P., Schaeffer J., Szafron D., Charter K., Parsons I., FastLSA: A Fast, Linear-Space, Parallel and Sequential Algorithm for Sequence Alignment // Algorithmica. – Vol. 45. – Р. 337–375, 2006. 22. Adomavicius G., Tuzhilin A., Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions // IEEE Trans. Knowledge and Data Engineering. – Vol. 17. – Р. 734–749, Jun, 2005. 23. Christinsen I. A., Schiaffino S. Entertainment recommender systems for group of users // Expert Systems with Applications. – Vol. 38. – Р. 14127–14135, 2011. 24. Tang X., Zeng Q. Keyword clustering for user interest profiling refinement with paper recommender system // Journal of Systems and Softwre. – Vol. 2. – Р. 87–101, 2011. 25. Saegusa T. An FPGA implementation of real-time K-means clustering for color images // Real Time Image Processing. – Vol. 2. – Р. 309–318, 2007. 26. Stekh Y., Lobur M., Faisal M.E. Sardieh, Dombrova M., Artsibasov V. Research and development of methods and algorithms non-hierarchical clustering,” in Proc. of the XIth International Conference CADSM, Lviv–Polyana, 2011. – Р. 205–207. 27. Lobur M., Stekh Y., Kernytskyy A., Faisal M.E. Sardieh Some trends in knowledge discovery and data mining in Proc. of the IVth International Conference MEMSTECH, Lviv–Polyana, 2008. – Р. 205–207. 28. Bezdek C., Ehrlich R., Full W. FCM: The fuzzy c-means clustering algorithm, Computers and Geoscience. – Vol. 10. – Р. 191–203, 1984.