Some methods in software development recommendation systems

: pp. 74 – 78

Stekh Y., Artsibasov V.

Lviv Polytechnic National University, CAD Departament 

This article analyzes the current state of the models and methods of building recommendation systems. The basic classes of problems that solve the recommendation system are highlighted. The features of the method collaborative filtering are shown. Developed a method for calculating the similarity coefficients, taking into account the sparseness of ratings vectors of goods and people.

1. Agarwal R. C., Aggarwa l C. C., Prasad V. V. V., A Tree Projection Algorithm For Generation of Frequent Itemsets // J. Parall. and Distrib. Comput., vol. 61, pp. 350–371, 2001. 2. Aggarwal C. C., Wolf J. L., W u K., Y u P. S., Horting Hatches an Egg : A New Graph-Theoretic Approach to Collaborative Filtering. in Proc. 5th ACMSIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pp. 201–212, 1999. 3. Agrawa l R., R. Srikant R., Mining Sequential Patterns, in Proc. 1 1th I t. Conf. on Data Engineering, pp. 3–14, 19 95. 4. Agrawal R., Imielinski T., Swami A., Mining Association Rules between Sets of Items in LargeDatabases. in Proc. of the ACM SIGMOD Conf. on Management of Data, pp. 20 7– 216, 1993. 5. Aldous D. J. , Reorganizing Large Web Sites. // Amer. Math. Monthly, vol.108, pp.16–27, 2001. 6. Antoniou G., van Harmelen F., A Semantic Web Primer: MIT Press, 2 edition, 2008. 7. BaezaYates R. A., Ribeiro-Neto B. Modern Information Retrieval. : Addison-Wesley Longman Publishing Co., Inc., 1999. 8. Balabanovi´c M., Shoham Y., Fab : Content-Based, Collaborative Recommen dation / / Commun.ACM, vol.40 pp.66–72, 1997 9. Baldi P., Frasconi P., Smyth P., Modeling the Internet and the Web: Probabil stic Methods and Algorithms: Wiley, 2003. 10. Banerjee A., Ghosh J., Clickstream Clustering using Weighted Longest Common Subs equences. in Proc. of the Web Mining Workshop at the 1st SIAM Conf. on Data Mining, pp. 33–40, 2001. 11. Berners-Lee T., Hendler J., Lassila O.. The Semantic Web // Scientific American vol. 284 p p.34–43, 200 1. 12. Borges J., Levene M., Data Mining of User Navigation Patterns, in Proc. Int. Workshop W EBKDD99 – Web Usage Analysis and User Profiling, pp.31–36, 1999. 13. Burke R. Hybrid Recommender Systems: Survey and Experiments // User Modeling and User-Adapted Interaction, vol.12 pp.331–370, 2002. 14. Cadez D., Heckerman D., Meek C., Smyth P., White S. Model-Based Cl ustering and Visualization of Navigation Patterns on a Web Site // Data Min. Knowl. Discov., vol.7 pp.399–424, 2003. 15. Chakrabarti S. Data Mining for Hypertext: A Tutorial Survey // ACM SIGKDD Explor. Newsl., vol.1 pp.1–11, 2000. 16. Cooley R., Mobasher B., J. Srivastava J. Data Preparation for M ining World W ide Web Browsing Patterns // Knowl. and Information Syst., vol.1 pp.5–32, 1999. 17. Cosley D., Lawrence S., Pennock D.M., REFEREE: An Open Framework for Practical Testing of Recommender Systems using Researchindex, in Proc. 28th Int. Conf. on Very Large Data Bases, pp.35–46, 2002. 18. Demir G.N., Uyar S., S., Gündüz-Ögüdücü S.. Multiobjective Evolutionary Clustering of Web User Sessions: A Case Study in Web Page Recommendation // Soft Comput., vol.14 pp.579–597, 2010. 19. Dempster A.P., Laird N.M., Rubin D.B., Maximum Likelihood from Incomplete Data via the EM Algorithm // J. Royal Statistical Society, Series B, vol.39 pp.1–38, 1977. 2 0. Deshpande M., Karypis G., Item-Based Top-N Recommendation Algorithms // ACM Trans. Inf ormation Syst., vol. 22 pp.143–177, 2004. 21. Driga A, Lu P., Schaeffer J., Szafron D., Charter K., Parsons I., FastLSA: A Fast, Linear-Space, Parallel and Sequential Algorithm for Sequence Alignment // Algorithmica, vol.45 pp.337–375, 2 006. 22. Adom avicius G., Tuzhilin A., Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions / / IEEE Trans. Knowledge and Data Engineering, vol. 17, pp.734–749, Jun, 2005. 23. Christinsen I. A., Schiaffino S. Entertainment recommender systems for group of users // Expert Systems with Applications, vol. 38, pp.1412 7–14135, 2011. 24. Tang X., Ze ng Q. Keyword clustering for user interest profiling refinement with paper recommender system / / Journal of Systems and Softwre, vol. 2, pp.8 7–101, 2011. 25. Saegusa T. An FPGA implementation of real-time K-means clustering for color images / / Real Time Image Processing, vol. 2, pp. 309–318, 2007. 26. Stekh Y., Lobur M., Faisal M.E. Sardieh, Dombrova M., Artsibasov V. Research and development of methods and algorithms non-hierarchical clustering," in Proc. of the XI th International Conference CADSM, Lviv-Polyana, 2011, pp. 2 05–207. 27. Lobur M., Stekh Y., Kernytskyy A., Faisal M.E. Sardieh Some trends in knowledge discovery and data mining in Proc. of the IVth International Conference MEMSTECH, Lviv-Polyana, 2008, pp. 205–207.