software module

ENVIRONMENT MONITORING WITH A PASSIVE PRESSURE-TEMPERATURE SENSOR BASED ON OPTICALLY ACTIVE MEDIA

The article is devoted to the study of the features of continuous monitoring of changes in the color of information channels of passive pressure-temperature sensors, tracking the spectral distribution of the light intensity of the liquid crystal color depending on the operating conditions. The main direction of application of such sensors can be “screening” of chemically active environments, deployment of temporary objects of short-term use in conditions of a pandemic, or military operations, etc.

HARDWARE & SOFTWARE COMPLEX OF OPTICAL IDENTIFICATION OF PASSIVE INFORMATION CHANNELS OF NON-CONTACT PRESSURE-TEMPERATURE SENSORS

The work proposes the use of a unique method of creating passive, multifunctional, non-contact pressure-temperature sensors. The basis of this method is a combination of inorganic semiconductors and high-molecular organic cholesteric crystals. According to their morphology, such crystals represent a spiral structure that is sensitive to changes in external physical factors, such as temperatures, due to changes in the periodicity of the structure, which leads to Bragg diffraction scattering of light on it.