METRICS-BASED IMAGE COMPARISON SOFTWARE MODULE

2025;
: 18-24
https://doi.org/10.23939/ujit2025.02.018
Received: October 11, 2025
Revised: October 28, 2025
Accepted: October 30, 2025

Цитування за ДСТУ: Березький М. О., Піцун О. Й. Програмний модуль порівняння зображень на основі метрик. Український журнал інформаційних технологій. 2025, т. 7, № 2. С. 18–24.
Citation APA: Berezkyi, M. O., & Pitsun, O. Y. (2025). Metrics-based image comparison software module. Ukrainian Journal of Information Technology, 7(2), 18–24. https://doi.org/10.23939/ujit2025.02.18

1
Ternopil National University, Ternopil, Ukraine; Lviv Polytechnic National University, Lviv, Ukraine
2
West Ukrainian National University, Ternopil, Ukraine

Developed a software module for automatic image comparison based on classical and advanced distance metrics to enhance the precision of biomedical image analysis. The study addresses the growing demand for intelligent tools capable of quantitative comparison of complex image structures, overcoming the limitations of existing systems such as ImageJ and Axio Vision. The research focuses on integrating Frechet, Hausdorff, Gromov – Frechet, Gromov – Hausdorff, and fuzzy Frechet and Hausdorff metrics within a unified modular architecture designed for distributed data environments. The methods of the research rely on the use of modern programming technologies (Java, PHP, Vue.js, Laravel, MySQL, OpenCV) and the principles of software modularity and service-oriented design.
Investigated the design and implementation of a web-based interface that enables users to upload, preview, and compare images interactively. The architecture integrates a RESTful API, microservice-based communication, and visualization components to represent metric results numerically and graphically. Established a relational database schema including entities for users, studies, comparators, and results, ensuring scalability and data integrity. Developed the core module consisting of the RestClient, MainComparator, and a set of specialized metric classes that implement the Comparator interface, allowing easy extension by new algorithms.
The developed system demonstrates a substantial improvement over existing software by combining traditional and modern metric-based methods and enabling remote interaction and integration with cloud services. Comparative analysis with ImageJ, Axio Vision, and HIAMS systems revealed that the proposed module uniquely supports both Gromov-based and fuzzy metrics while maintaining a user-friendly web interface and REST API access. The results confirmed the efficiency of the designed module for segmentation and clustering of biomedical images and its integration into the “BRECCAD” system for automatic breast cancer diagnosis. The proposed approach enhances reproducibility, modularity, and analytical accuracy, providing a foundation for further development of intelligent diagnostic software.

1. Taha, A. A., & Hanbury, A. (2015). Metrics for evaluating 3D medical image segmentation: Analysis, selection, and tool. BMC Medical Imaging, 15(29). https://doi.org/10.1186/s12880-015-0068-x
2. Maier-Hein, L., Reinke, A., Godau, P., et al. (2024). Metrics reloaded: Recommendations for image analysis validation. Nature Methods, 21, 195-212. https://doi.org/10.1038/s41592-023-02151-z
3. Samajdar, T., & Quraishi, M. I. (2015). Analysis and evaluation of image quality metrics. In J. Mandal, S. Satapathy, M. Kumar Sanyal, P. Sarkar, & A. Mukhopadhyay (Eds.), Information systems design and intelligent applications (Advances in Intelligent Systems and Computing, Vol. 340). Springer. https://doi.org/ 10.1007/978-81-322-2247-7_38
4. Zujovic, J., Pappas, T. N., & Neuhoff, D. L. (2013). Structural texture similarity metrics for image analysis and retrieval. IEEE Transactions on Image Processing, 22(7), 2545-2558. https://doi.org/10.1109/TIP.2013.2251645
5. Jagalingam, P., & Hegde, A. V. (2015). A review of quality metrics for fused image. Aquatic Procedia, 4, 133-142. https://doi.org/10.1016/j.aqpro.2015.02.019
6. Reinke, A., Maier-Hein, L., & Müller, H. (2021). Common limitations of performance metrics in biomedical image analysis. Proceedings of the Medical Imaging with Deep Learning (MIDL 2021).
7. Chow, L. S., & Paramesran, R. (2016). Review of medical image quality assessment. Biomedical Signal Processing and Control, 27, 145-154. https://doi.org/10.1016/j.bspc.2016. 02.006
8. Ponomarenko, N., Battisti, F., Egiazarian, K., Astola, J., & Lukin, V. (2009, January). Metrics performance comparison for color image database. Proceedings of the Fourth International Workshop on Video Processing and Quality Metrics for Consumer Electronic, 27, 1-6).
9. Russell, R., & Sinha, P. (2011). A perceptually based comparison of image similarity metrics. Perception, 40(11), 1269-1281. https://doi.org/10.1068/p7020
10. Liu, J., Ding, H., Cai, Z., Zhang, Y., Satzoda, R. K., Mahadevan, V., & Manmatha, R. (2023). Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 18653-18663.
11. Zhu, Y., Huang, B., Gao, J., Huang, E., & Chen, H. (2022). Adaptive polygon generation algorithm for automatic building extraction. IEEE Transactions on Geoscience and Remote Sensing, 60, Article 4702114. https://doi.org/10.1109/TGRS. 2021.3081582
12. Zhang, Y., Fan, H., Wang, F., Gu, X., Qian, X., & Poon, T.-C. (2022). Polygon-based computer-generated holography: A review of fundamentals and recent progress [Invited]. Applied Optics, 61, B363–B374. https://doi.org/10.1364/AO. 461601
13. Khan, W., Kumar, T., Zhang, C., Raj, K., Roy, A. M., & Luo, B. (2023). SQL and NoSQL database software architecture performance analysis and assessments – A systematic literature review. Big Data and Cognitive Computing, 7(2), 97. https://doi.org/10.3390/bdcc7020097
14. Bucaioni, A., Di Salle, A., Iovino, L., Mariani, L., & Pelliccione, P. (2024). Continuous conformance of software architectures. Proceedings of the IEEE 21st International Conference on Software Architecture (ICSA), 112-122. https://doi.org/ 10.1109/ICSA59870.2024.00019
15. Berezsky, O., & Zarichnyi, M. (2021). Metric methods in computer vision and pattern recognition. In N. Shakhovska & M.O. Medykovskyy (Eds.), Advances in Intelligent Systems and Computing V. CSIT 2020 (Advances in Intelligent Systems and Computing, Vol. 1293). Springer. https://doi.org/10.1007/ 978-3-030-63270-0_13
16. Berezsky, O., & Zarichnyi, M. (2018). Gromov – Fréchet distance between curves. Matematychni Studii, 50(1), 88-92. https://doi.org/10.15330/ms.50.1.88-92
17. Bazylevych, L., Berezsky, O., & Zarichnyi, M. (2022). Fréchet fuzzy metric. Matematychni Studii, 57(2), 210-215. https://doi.org/10.30970/ms.57.2.210-215