стоксові постійні

Algorithm for constructing the subsoil density distribution function considering its value on the surface

The conventional approach to constructing a three-dimensional distribution of the Earth's masses involves using Stokes constants incrementally up to a certain order. However, this study proposes an algorithm that simultaneously considers all of these constants, which could potentially provide a more efficient method. The basis for this is a system of equations obtained by differentiating the Lagrange function, which takes into account the minimum deviation of the three-dimensional mass distribution of the planet's subsoil from one-dimensional referential one.

Investigation of the asymmetry of the Earth's gravitational field using the representation of potentials of disks

The paper considers representations of the Earth external gravitational field, supplementing its traditional approximation by series in spherical functions. The necessity for additional means of describing the external potential is dictated by the need to study and use it at points in space close to the Earth's surface. It is in such areas that the need arises to investigate the convergence of series with respect to spherical functions and to adequately determine the value of the potential.

The gradient construction approach analysis of the three-dimensional mass distribution function of the ellipsoidal planet

Purpose. To investigate the features of the algorithm implementation for finding the derivatives of the spatial distribution function of the planet's masses with the use of high-order Stokes constants and, on the basis of this, to find its analytical expression. According to the given methodology, to carry out calculations with the help of which to carry on the study of dynamic phenomena occurring inside an ellipsoidal planet.

The methodology of approximate construction of the three-dimensional mass distribution function and its gradient for the ellipsoidal planet subsidies

Purpose. To create an algorithm for constructing a three-dimensional masses distribution function of the planet and its derivatives taking into account the Stokes constants of arbitrary orders. Being based on this method, the task is to perform the research on the internal structure of the Earth. Methodology. The derivatives of the inhomogeneous mass distribution are presented by linear combinations of biorthogonal polynomials which coefficients are obtained from the system of equations.

Researching the influence of the mass distribution inhomogeneity of the ellipsoidal planet’s interior on its stokes constants

Purpose. Parameters of Earth’s gravitational field ( ) are determinated by its figure and internal filling (mass distribution) that have a different influence on their formation. Using a well-known representation of the planet masses distribution functions in the biorthogonal series form it is necessary to establish the Stokes constants  presentation through the planet potential expansion coefficients  and liner combinations of ellipsoid geometric parameters.

Method for approximate construction of three-dimensional mass distribution function and gradient of an elipsoidal planet based on external gravitational field parameters

Purpose. To investigate the technique for constructing a three-dimensional distribution function for the masses of the interior of the Earth and its derivatives, coordinated with the parameters of the planet's gravitational field to fourth order inclusive. By using the mass distribution function constructed, to make an interpretation of the features of the internal structure of an ellipsoidal planet. Methodology. Based on the created initial approximation of the function, which includes a reference density model, further refinements are built.

One option of constructing three-dimensional distribution of the mass and its derivatives for a spherical planet Earth

Purpose. To build a three-dimensional function of the mass distribution of the Earth's interior according to the parameters (Stokes constant to the second order inclusive) of the external gravitational field of the Earth without considering the minimum deviation from its known density models in geophysics. Methodology. The classic methods of constructing mass distribution use only the Stoke’s constants zero and second orders.