A continuous SIR mathematical model of the spread of infectious illnesses that takes human immunity into account

: pp. 53–65
Received: August 10, 2022
Accepted: November 18, 2022
Laboratory of Analysis Modeling and Simulation, Casablanca, Morocco
Laboratory of Analysis Modeling and Simulation, Casablanca, Morocco
Laboratory of Analysis Modeling and Simulation, Casablanca, Morocco
Laboratory of Analysis Modeling and Simulation, Casablanca, Morocco
Laboratory of Analysis Modeling and Simulation, Casablanca, Morocco
Laboratory of Analysis Modeling and Simulation, Casablanca, Morocco

A mathematical model of infectious disease contagion that accounts for population stratification based on immunity criteria is proposed.  Our goal is to demonstrate the effectiveness of this idea in preventing different epidemics and to lessen the significant financial and human costs these diseases cause.  We determined the fundamental reproduction rate, and with the help of this rate, we were able to examine the stability of the free equilibrium point and then proposed two control measures.  The Pontryagin's maximum principle is used to describe the optimal controls, and an iterative approach is used to solve the optimality system.  Finally, numerical simulations are carried out in MATLAB to verify the theoretical analysis.

  1. Delves P. J., Roitt I. M.  The immune system.  New England Journal of Medicine.  343 (1), 37–49 (2000).
  2. Pancer Z., Cooper M. D.  The evolution of adaptive immunity.  Annual Review of Immunology.  24 (1), 497–518 (2006).
  3. Hoebe K., Janssen E., Beutler B.  The interface between innate and adaptive immunity.  Nature Immunology.  5 (10), 971–974 (2004).
  4. Mitchison N. A.  The carrier effect in the secondary response to hapten-protein conjugates. II. Cellular cooperation.  European journal of immunology.  1 (1), 18–27 (1971).
  5. Stewart-Tull D. E.  The Theory and Practical Application of Adjuvants. Wiley (1995).
  6. Thompson K., Harris M., Benjamini E., Mitchell G., Noble M.  Cellular and humoral immunity: a distinction in antigenic recognition.  Nature New Biology.  238 (79), 20–21 (1972).
  7. Cantor H., Boyse E. A.  Regulation of cellular and humoral immune responses by T-cell subclasses.  In: Cold Spring Harbor symposia on quantitative biology.  41, 23–32.  Cold Spring Harbor Laboratory Press (1977).
  8. Novotný J., Bruccoleri R., Newell J., Murphy D., Haber E., Karplus M.  Molecular anatomy of the antibody binding site.  Journal of Biological Chemistry.  258 (23), 14433–14437 (1983).
  9. Garcia K. C., Teyton L., Wilson I. A.  Structural basis of T cell recognition.  Annual Review of Immunology.  17, 369–397 (1999).
  10. Turvey S. E., Broide D. H.  Innate immunity.  Journal of Allergy and Clinical Immunology.  125 (2), S24–S32 (2010).
  11. Nevard C., Gaunt M., Ockleford C.  The Transfer of Passive and Active Immunity.  In: The Immunology of the Fetus. 193–214.  CRC Press (2020).
  12. Rich R. R., Chaplin D. D.  The Human Immune Response.  In: Clinical Immunology (Fifth Edition). 3–17. Elsevier (2019).
  13. Freeman G. J., Casasnovas J. M., Umetsu D. T., DeKruyff R. H.  TIM genes: a family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity.  Immunological Reviews.  235 (1), 172–189 (2010).
  14. Bell J. I., Todd J. A., McDevitt H. O.  The Molecular Basis of HLA–Disease Association.   In: Harris H., Hirschhorn K. (eds) Advances in Human Genetics.  18, 1–41 (1989).
  15. Evans A. S.  Viral Infections of Humans: Epidemiology and Control.  Springer Science & Business Media (2013).
  16. Burrell C. J., Howard C. R., Murphy F. A.  Pathogenesis of Virus Infections. Fenner and White's Medical Virology (Fifth Edition). 77–104 (2017).
  17. Duggal S., Chugh T. D., Duggal A. K.  HIV and malnutrition: effects on immune system.  Journal of Immunology Research.  2012, 784740 (2012).
  18. Perelson A. S.  Modeling the interaction of the immune system with HIV.  In: Castillo-Chavez C. (eds) Mathematical and Statistical Approaches to AIDS Epidemiology.  83, 350–370 (1989).
  19. Volberding P. A., Deeks S. G.  Antiretroviral therapy and management of HIV infection.  The Lancet.  376 (9734), 49–62 (2010).
  20. Lekka M.  Discrimination between normal and cancerous cells using AFM.  BioNanoScience.  6 (1), 65–80 (2016).
  21. Armstrong A. C., Eaton D., Ewing J. C.  Cellular immunotherapy for cancer.  BMJ.  323 (7324), 1289–1293 (2001).
  22. Lafif M., Khaloufi I., Benfatah Y., Bouyaghroumni J., Laarabi H., Rachik M.  A mathematical SIR model on the spread of infectious diseases considering human immunity.  Communications in Mathematical Biology and Neuroscience.  2022, 69 (2022).
  23. El Bhih A., Benfatah Y., Ghazaoui A., Rachik M.  On the maximal output set of fractional-order discrete-time linear systems.  Mathematical Modeling and Computing.  9 (2), 262–277 (2022).
  24. El Bhih A., Benfatah Y., Ben Rhila S., Rachik M., El Alami Laaroussi A.  A spatiotemporal prey-predator discrete model and optimal controls for environmental sustainability in the multifishing  areas of Morocco.  Discrete Dynamics in Nature and Society.  2020, 2780651 (2020).
  25. Perko L.  Differential Equations and Dynamical Systems.  Springer (2014).
  26. Bani-Yaghoub M., Gautam R., Shuai Z., Van Den Driessche P., Ivanek R.  Reproduction numbers for infections with free-living pathogens growing in the environment.  Journal of biological dynamics.  6 (2), 923–940 (2012).
  27. Fleming W. H., Rishel R. W.  Deterministic and Stochastic Optimal Control. \textbf{1}. Springer Science & Business Media (2012).
  28. Kouidere A., Kada D., Balatif O., Rachik M., Naim M.  Optimal control approach of a mathematical modeling with multiple delays of the negative impact of delays in applying preventive precautions against the spread of the COVID-19 pandemic with a case study of Brazil and cost-effectiveness.  Chaos, Solitons & Fractals.  142, 110438 (2021).
  29. Pontryagin L. S.  Mathematical Theory of Optimal Processes.  CRC press (1987).
  30. Benfatah Y., Khaloufi I., Boutayeb H., Rachik M., Laarabi H.  Optimal control for a discrete time epidemic model with zones evolution.  Communications in Mathematical Biology and Neuroscience.  2022, 51 (2022).
  31. Khaloufi I., Benfatah Y., Laarabi H., Rachik M.  A scenario to fight monkeypox using a mathematical model.  Communications in Mathematical Biology and Neuroscience.  2022, 99 (2022).
Mathematical Modeling and Computing, Vol. 10, No. 1, pp. 53–65 (2023)